

Biochemistry and Living Systems: Interactions, Technologies, and Environmental Impacts

Editors

Ruaa Nadheer Dakhil

Department of Biotechnology Employee, University of Karbala-
College of Medicine, College of Applied Sciences, University of
Technology, Iraq

Huda Salman Oufi

Department of Chemistry Employed at the College of Applied
Medicen Sciences, College of Sciences, University of Kerbala, Iraq

Sarah Alwan Malik

Department of Life Sciences Employee at the College of Medicine,
College of Education for Pure Sciences, University of Karbala, Iraq

Athraa Ahmed Jawad Kazem Qasim

Department of Environment, College of Environmental Sciences, Al-
Qasim Green University, Iraq

Bright Sky Publications™
New Delhi

Published By: Bright Sky Publications

*Bright Sky Publication
Office No. 3, 1st Floor,
Pocket - H34, SEC-3,
Rohini, Delhi, 110085, India*

Editors: Ruaa Nadheer Dakhil, Huda Salman Oufi, Sarah Alwan Malik and Athraa Ahmed Jawad Kazem Qasim

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologize if permission and acknowledgements to publish in this form have not been given. If any material has not been acknowledged, please write and let us know so that we may rectify it.

© Bright Sky Publications

Edition: 1st

Publication Year: 2026

Pages: 119

Paperback ISBN: 978-93-6233-233-2

E-Book ISBN: 978-93-6233-139-7

DOI: <https://doi.org/10.62906/bs.book.491>

Price: ₹605/-

Abstract

Biochemistry is the study of the molecular basis of biological structure and function, covering both basic biochemical processes and applied aspects. Ever-expanding knowledge about the biochemistry of living organisms fuels scientific progress, leads to practical applications, and informs human behavior concerning health and environmental stewardship. The growing awareness of pathogens, viruses, toxins, and contamination has prompted greater interest in the biology of microbes and processes like fermentation, bioremediation, and other systems of wastewater disposal and treatment.

Digging deeper into the biochemical processes of life, regardless of the initial reason, uncovers further connections and suggests new research questions. The entire subject is interconnected. For example, advances in biochemical technology rely on specialized instrumentation, such as powerful sequencers, advanced spectrometers, and powerful computers and software for data analysis. All branches of biochemistry are now interconnected, and the structures of proteins, reactions taking place in cells, and metabolites produced by living organisms all find application in various fields, including medicine, biotechnology, and environmental engineering.

Contents

S. No.	Chapters	Page No.
1.	Foundations of Biochemistry in Living Systems	01-04
2.	Water, Ions, and Biomolecular Interactions	05-09
3.	Proteins in Living Systems	10-13
4.	Enzymes and Biological Catalysis	14-17
5.	Carbohydrates and Cellular Communication	18-21
6.	Lipids and Biological Membranes	22-26
7.	Nucleic Acids and Genetic Information	27-31
8.	Metabolism and Bioenergetics	32-35
9.	Cellular Signaling and Communication	36-40
10.	Biochemical Technologies and Analytical Methods	41-45
11.	Systems Biochemistry and Network Biology	46-49
12.	Biochemistry of Microorganisms	50-55
13.	Biochemistry of Plants and Ecosystems	56-59
14.	Environmental Biochemistry and Pollution	60-64
15.	Biochemistry in Human Health and Disease	65-69
16.	Biotechnology and Biochemical Engineering	70-75
17.	Sustainable Biochemistry and Green Technologies	76-79

18. Ethical, Societal, and Future Perspectives	80-84
19. Conclusion	85-86
References	87-119

Chapter - 1

Foundations of Biochemistry in Living Systems

The molecular basis of life is united with cellular organization to provide a foundation for understanding metabolism, energy flow, homeostatic networks, and biochemical regulation. Living systems are constructed from basic molecular building blocks that also dictate higher-order structures such as proteins and membranes. These assemble into cells, where molecular interactions facilitate chemical processing and transport for energy capture, conversion, and storage. Pathways and fluxes are tuned to the changing environment through feedback regulation acting at multiple levels, with critical perturbations propagating to the entire system. Together, homeostasis, biological organization, and the principles of biochemistry govern cellular metabolism.

The integration of basic biochemistry with the three-key-cell-investigation concept provides a framework for understanding the origins and processes of living systems. Water serves as an essential solvent for biochemical interactions and is the preparatory reactant for metabolic assembly. Ions support membranous functions and participate in buffering networks. Molecular interactions such as hydrogen bonds, electrostatics, hydrophobic forces, and van der Waals attractions modulate the stability of biomolecules.^[1, 2, 3, 4]

Molecular basis of life

The fundamental components of living systems are organic molecules formed from bioelements, whose atomic structure determines the nature of the covalent bonds they form and the stability of the resulting molecules. In return, the physical and chemical principles governing the energetics associated with molecular transformations constrain metabolic pathways and outcomes. Although

the core invariants at the molecular scale provide an essential foundation for the biochemical understanding of life, it is the vast complexity of the underlying interaction networks that enables the different manifestations of living organisms.

At the cellular and tissue scale, molecular similarities give way to diversity in cellular architecture that embraces eukaryotes and prokaryotes, multicellular organisms and viruses, saprophytes and extremophiles. The spatial distribution of different biomolecules within cells and tissues is no longer random. Instead, it is the result of selective pressures that act on organisms and communities, enabling their emergence, survival, and reproduction. The spatial organization is a necessary condition responsible for directing numerous chemical processes, because the reaction rate is known to depend on the concentration of the reactants, which are usually present at varying levels of abundance. Living systems exploit this vast diversity to build complex interaction networks, and in this way capture and utilize energy to sustain order, reproduce, and evolve. [5, 6, 7, 8, 9]

Biomolecules and cellular organization

Biochemical systems are composed of a range of organic molecules that fulfill diverse structural and functional roles. Carbohydrates, lipids, proteins, and nucleic acids play fundamental roles as energy sources, genetic materials, enzymes, and signaling molecules. These biomolecules can be distinguished according to molecular weight and elemental composition. Within each class, individual components differ in function, location, and concentration. Together, they interact to govern cellular organization, metabolism, information processing, and responses to internal and external stimuli. Such interactions are often mediated by proteins. The collection of pathways through which cells metabolize biomolecules, normally with a net release of free energy, is referred to as metabolism. The flow of energy is coupled to the reaction pathways involved in the synthesis of complex molecular structures, normally with a net requirement of free energy. The net flow of chemical materials and energy into, throughout, and out of a cell constitutes its metabolism. Enzymes, usually proteins, catalyze the many reactions of catabolism and

anabolism. The enzyme-catalyzed reactions of metabolism can be organized into metabolic pathways.

In multicellular organisms, living systems can be understood at multiple levels of organization. Basic metabolic pathways are highly conserved across organisms and species and can be mapped as an interconnected web. Higher levels of organization-cells within tissues within organs within organisms-reflect additional features of design, such as distinct compartments and biomolecular components that group together and change dynamically, respond to the environment, and carry out higher-level functions. Although distinctive labels can be attached to the various levels of organization in living systems, emerging system-level properties are difficult to identify without consideration of the whole. For all of these reasons, the study of metabolism forms a natural bridge between the molecular and cellular levels of organization. [10, 11, 12, 13]

Energy flow in biological systems

Encompasses the processes of energy capture, transfer, and storage, connecting the molecular processes that represent biochemistry to the larger cellular organization associated with living systems. Phototrophs capture energy from sunlight and use it to drive the conversion of carbon dioxide into carbohydrates, while chemotrophs acquire chemical energy in the form of organic molecules and convert them into forms suitable for biological reactions. Although energy cannot be created, destroyed, or converted into any form whatsoever, cells use energy to make ATP, and ATP hydrolysis provides energy for many cellular processes, including biosynthesis, movement, and ionic transport.

Enthalpy, entropy, and Gibbs free energy balance provide a thermodynamic basis for the direction of chemical processes; describing the energetics of chemical reactions as oxidation-reduction reactions clarifies mechanisms of biological energy transfer and capture. The free energy change associated with electron transfer in biological systems, together with the conservation of matter, explains how the electrons gained by reducing agents, such as NADPH or QH₂, balances the electrons released by oxidizing agents. Passage through

an electrochemical gradient generates the proton-motive force associated with oxidative phosphorylation and fuels much of the energy that drives cellular function. ATP can also be viewed as a complex of its constituent components that has a lower standard free energy than would be predicted from the study of its components in isolation. [14, 15, 16, 17]

Homeostasis and biochemical regulation

Living systems perform an astonishing range of biochemical functions, from metabolic activity within individual cells to the integrated maintenance of diverse organisms and ecosystems, yet must rely on surprisingly simple approaches for regulation. The myriad pathways and reactions occurring in any organism represent a complex dynamic system whose activity can be modulated locally or globally, at levels that encompass the chemical, genetic, and ecological. Negative feedback is relied upon extensively to establish and stabilize both internal and external conditions, while perturbations can also lead to appropriate adaptive responses. The use of allosteric enzymes increases the efficiency and economy of control of key metabolic pathways, while cooperative binding behaviour by regulatory molecules allows for the integration of multiple signals.

Any living organism must remain internally stable while facing challenges or changes from the external environment. The survival and continuing normal function of the organism therefore depend on the control of a range of physiological processes that normally remain within narrow limits yet can be modulated to accommodate certain types or magnitudes of stress. If the conditions or stresses persist for long periods, more profound adjustments to internal physiological processes must occur in order for the organism to survive. In this sense, the normal maintenance of internal conditions such as temperature or pH is adaptive homeostasis, while persistent changes correspond to acclimatization or adaptation. In multicellular organisms, biochemical homeostasis is a process that is such a large organizational change that it is best perceived at a higher level than a single metabolic pathway. Another component of defensive homeostasis is the signalling network, whose primary function is to detect and signal the presence of stress. [18, 19, 20, 21]

Chapter - 2

Water, Ions, and Biomolecular Interactions

The structure and properties of water are foundational to biochemistry and play a critical role in molecular interactions, nucleophilicity, and biological organization. Water is a highly polar solvent that enables the ionization of many organic and inorganic compounds and interacts strongly with ionic and polar groups of biomolecules through solvation and hydrogen bonding. The dielectric constant of water diminishes electrostatic interactions and favors the formation of hydrated ionic pairs and biological salt bridges. Furthermore, the high dielectric constant of water makes it an excellent solvent for biomolecular reactions, capable of stabilizing the transition states of many reactions. Water promotes the proper folding of biomolecules by stabilizing their native conformations, primarily through hydrogen bonding, and acts as a nucleophile in numerous enzymatic and biochemical reactions.

Ionic interactions among charged groups constitute one of the fundamental non-covalent biomolecular interactions. Such interactions can be electrostatic in nature or involve the formation of sodium or potassium–water clusters. Buffers, by virtue of their capacity to resist changes in pH, play an important role in regulating pH in biological systems. The concentration of H^+ ions is a critical parameter determining the nucleophilicity and extent of protonation of many functional groups in biological molecules, thus influencing the rates of enzymatic and biochemical reactions and the structures and functions of proteins and nucleic acids. Hydrogen bonds are another important class of non-covalent interactions found in all biomolecules. In aqueous solution, hydrogen bonds contribute to the three dimensional structures and stability of proteins and nucleic acids. ^[22, 23, 24, 25]

Structure and properties of water

Water's unique properties, derived from its molecular structure, are indispensable to life. The polar water molecule (H_2O) is bent rather than linear because the two hydrogen atoms are bonded to one oxygen atom at an angle of about 104.5° . As a result of its polar character, water can interact favorably with other polar molecules or ions in a solvation process whereby the solvent molecule clusters about a solute particle. Water has an incredible capacity for solvation because its surface is polar and unlike charges attract. For biological systems, water appears to be the optimal solvent, not just for its polar character but also for its ability to form hydrogen bonds. Water is a reactant in various biological reactions, including photosynthesis. Other unusual properties include the rather high heat capacity (or poor thermal conductivity) of liquid water and the relatively high enthalpy of vaporization of water. These properties of water have crucial effects on living systems.

The most important property of water, however, could be its self-dissociation into H^+ and OH^- ions. Even though this equilibrium lies significantly on the side of water, the concentration of H^+ is sufficient to allow aqueous solutions to possess an acidity or basicity that can be controlled. Any modification of H^+ concentration must be accompanied by a correspondingly large change in solvent excess. Hence, pH is a very sensitive measure of changes in water/solvent properties. The concentration of protons can change by a factor of 10 in aqueous solutions (compared with 1 in most other solutions) but changes in its properties can have significant real biological consequences. The high dielectric constant of water, relative to other solvents, diminishes the capacity for ion pairing and hence increases the concentration of free ions available for electrostatic interactions.^[26, 27, 28, 29]

Ionic interactions and buffering systems

Biochemical systems can involve a variety of ions, ranging from simple inorganic cations and anions to complex charged organic molecules. Although these ions are generally less abundant than the main biomolecules, they play crucial roles in biochemical reactions by

stabilizing protein and nucleic acid structures and modulating enzymatic activity. Ionic interactions can be depicted as electrostatic interactions between oppositely charged biomolecular moieties and can also include more complex effects arising from the influence of ionic distributions in specific regions of solvation around poorly-solvated charged groups. These oppositely-charged colloidal particles, ions, and their local distribution thus behave as an electrolyte solution within a ‘water-in-water’ emulsion-like medium (the solvation barrier around the charged groups) that provides a contrast to the bulk solvent. The dielectric constant effect resulting from the presence of the solvent differentiates among the different types of interactions, following the well-known Matsui and Hasted equation. The pH also represents a case of ionic interaction at the molecular level, with protons being associated with water or hydroxide ions and more complex organic molecules. The influence of these parameters on stability and activity can be studied through exact methods in nanosystems and mesosystems, respectively.

Biochemical systems also include buffering systems, which minimize the charge variations ensuing from processes such as respiration, photosynthesis, the protonation/deprotonation of weak acids, and the dissociation/formation of C–C bonds. Each buffering process or pathway can therefore be analyzed separately. Buffers modulating the pH in the normal physiological range are almost exclusively defined by the dissociation/formation of weakly basic acids, with the pK value of these acids being close to that of the equilibrium pH. variations accompanying a given process are determined by the amount of base or acid lost or produced and by the apparent acidity constant of the weak acid. This appears more intricate and less obvious when biological respiration and photosynthesis are included. [30, 31, 32, 33]

Hydrogen bonding and hydrophobic effects

Considering potential interactions between molecules and their recognized contributions to the understanding of molecular interactions, two important phenomena are discussed: hydrogen bonding and hydrophobic effects. While attention is directed mainly

toward hydrogen bonds, a brief discussion of hydrophobic interactions is included to emphasize their roles in molecular interactions.

At an intuitive level, hydrogen bonds can be understood as weak contacts between electron-rich and electron-deficient atoms. More detailed treatment, however, identifies hydrogen bonds as a special case of dipole-dipole interactions that are highly directional. Indeed, hydrogen bonds are among the strongest dipole-dipole interactions in nature, and there is no better example of how the nature of a bond determines its ultimate functional role.

Hydrogen bonding occurs when a hydrogen atom covalently bonded to a highly electronegative atom (donor) is attracted to the lone pair(s) of another electronegative atom (acceptor). To be classified as a hydrogen bond, the distance between the donor and acceptor should be much smaller than that expected for the two atoms in isolation, and the connectivity must be consistent with the more restrictive nature of hydrogen bonding compared to simple dipole-dipole interactions. The apparent strength of the hydrogen bond is determined by the identity of the donor and acceptor atoms and by the number of individual hydrogen bonds formed in a molecule. While the acidic hydrogen of a carboxylic acid is by far the best donor because of its high degree of positive charge, the oxygen of a carbonyl is the next best donor, especially when the carbonyl oxygen is at the end of a chain. Although nitrogen, sulfur, and phosphorus are also able to act as hydrogen-bond donors, they do so with far less intensity than oxygen and fluorine. The two forms of carbon that act as hydrogen-bond acceptors are the more electronegative oxides and the nitrogen of a basic group. [34, 35, 36, 37]

Solvent effects on biomolecular structure

Conformational equilibria of essential biomolecules are influenced by the solvent environment. Polarity modulates charge distribution within polar groups and constituent monomers coupled to dielectric effects affecting electrostatics and hydrogen bonding, whereas viscosity dictates backbone dynamics. Changes associated with solvent composition impact relative populations of folded and unfolded states, transition rates, and catalysis.

Overlapping contributions of translational motion of solvent particles to molecular vibration and rotation lead to a simplified mode of solvation addressing the impact of solvent viscosity on associated free energies of activation. This results in a non-linear Arrhenius relationship where rates of solvent-inhibited reactions exhibit a break point at elevated viscosity. The ability of water to stabilize or destabilize a specific biomolecular conformation is derived from a thermodynamic relationship. Removal of the lowest-dielectric environment enhances the population of polar/unpolar interfaces, which is of special significance for the folded state of water-soluble globular proteins. The fold is additionally stabilized by accommodation of the natural ΔpK_a complement of the titratable side chains of the constituent residues and loss of the pH-headed substrates! The loss of thermodynamic design applies to aqueous solutions of surfactant-solubilized membrane proteins, where enzyme-catalyzed processes are substantially hydrated.

In biochemistry, warm solvents are usually supplied by the interacting components, including the membrane, when the biopolymer start to unfold. The higher the T , the more all components are degenerate in this aspect and the higher the pressure tangent of the polymer Michaelis peak. Increase of a specific B–A interaction in the ground-state complex lowers the associated ΔpG degree of activation of the reaction and can nullify the influence of T_s . On cooling, the solvent typically becomes more viscous, reducing the rate-controlling swings of the involved moieties. ^[1, 38, 39, 40]

Chapter - 3

Proteins in Living Systems

Proteins are the most diverse and complex biomolecules found in living systems. Different enzymatic proteins catalyze virtually every chemical reaction, and non-enzymatic proteins serve diverse structural, motile, protective, and regulatory roles. The functional diversity of proteins is ultimately determined by the sequence of their constituent amino acids; this sequence dictates the long-range three-dimensional structure of proteins, which enables the interactions with the other compounds required for their diverse functions. The study of protein structure, folding, dynamics, and function is therefore essential for understanding the biochemistry of living organisms.

Amino acids are the building blocks of proteins. They share a common structure but differ at the side chain, which imparts distinctive chemical properties to each. These differences in structure and properties are the key to understanding the three-dimensional structures of proteins and their diverse functions. The equilibrium between the different conformational states of a protein determines its biological activity. The main forces stabilizing the folded conformation under physiological conditions are non-covalent interactions, which also control the binding of ligands to proteins and protein–protein interactions. Enzymes serve a central role in cellular metabolism and catalyze nearly all biochemical reactions, enabling biological activity at physiological temperatures. [41, 42, 43, 44]

Amino acid structure and classification

Amino acids possess diverse side chains that differ in structure, charge, size, and polarity. The present classification of amino acids accounts for these properties in relation to protein structure and function. The α -carbon atom is tetracoordinated and is therefore linked

to an amino group and a carboxylic acid group. In addition, the α -carbon is bonded to a side chain (a substituent)

The structure of side chains determines their charge state as a function of pH. Within proteins under physiological conditions, amino acid side chains are ionized, and their charge states influence protein structure and stabilization within folded conformations. Classification of amino acids reflects chemical properties of side chains. Nonpolar side chains are hydrophobic or hydrophilic, while polar side chains can be neutral, basic, or acidic. Ionizable side chains are also polar but carry a positive or negative charge. The distinct chemical properties enable side-chain interactions that facilitate folding and the formation of 3D shapes. Nonpolar amino acids congregate at the core of proteins to avoid water, while polar residues reside at the protein surface to engage in hydrogen bonding and ionic interactions. [45, 46, 47, 48]

Protein folding and stability

Protein folding is the spontaneous process by which a polypeptide chain assumes its three-dimensional structure, which enables the protein to carry out its functions. Dedicated proteins, termed chaperones or chaperonins, assist in the complex folding process and counteract destabilizing effects from cellular stress. Misfolding can lead to aggregation and the formation of insoluble fibrils, causing various diseases. The conformational states of proteins are determined by both the primary amino acid sequence and the chemical conditions of the cellular environment. Under physiological conditions, proteins generally adopt a folded structure; however, some may enter partially folded ensembles or may even remain intrinsically disordered.

The principles of protein folding, stability, and function have been elucidated primarily from studies on globular proteins. These proteins exhibit a well-defined three-dimensional structure and are water-soluble; they can be characterized by common fold types (e.g., α -helices, β -sheets) and typically consist of multiple motifs. The stability of globular proteins arises from the highly favorable free energy change associated with the hydrophobic effect, which grants them their compact shape and placement of polar and charged side chains in solvent-exposed regions. Hydrogen bonds formed between the peptide

backbone and interactions between polar or charged side chains can also contribute to stability, although these interactions are less significant than the hydrophobic effect. [49, 50, 51, 52]

Enzymatic and structural protein functions

Proteins perform a multitude of roles in living systems, with diverse functions related to metabolism, structure, transport, signaling, communication, and defense. Enzymes are the biological catalysts that enable virtually all of the chemical reactions in living systems. As such, they are central to metabolism, the sum of all the chemical reactions within cells. Catalysis involves the stabilisation of transition states and differs in principle from chemical catalysis only in that the reaction does not proceed through a unique path. The discovery of ribozymes (RNA enzymes) demonstrates that RNA is capable of catalysis. Proteins that are not directly involved in catalysis often provide structural or mechanical support to the cell or organism.

Enzymes exhibit remarkable specificity for their substrates and can be classified as either endo- or exoenzymes. They can be controlled by small molecules and ions, either in an anholonomic (allosteric) manner or through active-site occupation (inhibition); all forms of control are of greatest importance to the regulation of metabolism throughout the living world. Groups 1 to 3 of the Enzyme Commission (EC) list comprise enzymes that catalyse the interconversion of bonds in biological macromolecules. At least around 80% of phospholipids in all biological membranes are asymmetric. In living organisms, phospholipid transport occurs mainly through phospholipid transfer proteins (PLTPs). [53, 54, 55, 56, 57]

Protein regulation and turnover

Regulation and turnover of proteins is key to maintaining homeostasis in cells, and system-wide pathways underpinning these features are well characterized. Synthesis, degradation, and post-translational modifications affect the quality and quantity of each protein and the processes in which it participates, providing opportunities for the system to respond to internal demands and external perturbations. Heterogeneity in the composition of macromolecular complexes, transcription–translation timing and

localization, and enzyme kinetics allow cells to rapidly respond during signaling, while control of cellular concentrations, reactivity, and incompatibility within complexes determines the duration of specific responses.

High protein turnover is common in eukaryotic cells and maintains the concordance of protein amounts and cellular activity. Specific proteolytic pathways target subsets of proteins, dictating their half-lives and effects on cellular behavior. Two key proteolytic systems, the ubiquitin–proteasome system and autophagy, are tightly connected to the signaling capabilities of the cell. Notably, important signaling molecules such as receptors, transcription factors, and cell-cycle regulators are in constant flux of synthesis and degradation, allowing rapid adjustments to changing biological requirements. [58, 59, 60, 61]

Chapter - 4

Enzymes and Biological Catalysis

Equilibrium considerations indicate that the rate of a spontaneous reaction is generally slow in a living system, making it impractical for the organism to wait to complete any significant change by thermodynamic equilibrium. Therefore, a series of coupled reactions is constantly at partial equilibrium, allowing the organism to survive life. Biochemical reactions supporting metabolism and other cellular functions require participating protein bio-catalysts, Enzymes, that recognize unique substrates, ensure specific products, and while remaining unchanged in mass and chemical composition, are released for immediate entry into another coupling reaction. The net buildup of special end products is carefully balanced. Nevertheless, enzymes have an inherent reaction turnover capacity, but not all enzyme reactions proceed at their maximum rate.

The reaction velocity with respect to the substrate concentration is usually hyperbolic and described by the molecularian-Menten equation with a constant, termed KM, denoting the substrate concentration when $v = 0.5v_{max}$. The ratio v/V_{max} and the inverse of the Michaelis-Menten constant, when multiplied by a suitable constant, target the degree of saturation of the enzyme at different substrate concentrations. The inherent turnover capacity of enzymes determines the time expended in an intracellular enzymatic reaction that approaches thermodynamic equilibrium. For regulatory processes that occur rapidly relative to substrate concentration changes, this is an important design criterion. [62, 63, 64, 65]

Principles of enzyme kinetics

The kinetic behavior of enzymes provides fundamental insights into their catalytic function. Kinetic studies determine how the rate of an enzyme-catalyzed reaction depends on substrate concentration and

other factors. These studies yield kinetic parameters that characterize the properties of the enzyme, including its reaction mechanism and interactions with regulators, substrates, and products. The foundations of enzyme kinetics were established for purified enzymes by the Scholar Michaelis and his student Menten in a landmark 1913 paper. The resulting Michaelis–Menten model describes how the rate of an enzyme-catalyzed reaction depends on substrate concentration, the enzyme concentration, and the upper limit on reaction rate.

On average, enzyme-catalyzed reactions in cells occur about 107 times faster than the same reaction would occur in the absence of the enzyme catalyst. A central measure of catalytic effectiveness is k_{cat} , the turnover number of the enzyme, which indicates the limit of the rate of the enzyme-catalyzed reaction as the substrate concentration becomes very large. Catalytic efficiency describes how fast an enzyme-catalyzed reaction is for each mole of enzyme at 1 M substrate concentration and is expressed by the ratio k_{cat}/K_M . Enzyme kinetics also provides insight into regulatory mechanisms that alter the rate of enzyme-catalyzed reactions in cells. Metabolite concentrations are rarely well above the K_M for their respective enzymes and may be near the K_M for some enzymes but far below it for most enzymes. When metabolite concentration is much lower than the K_M there are few occupied active sites, and regulatory effects can be important.

Enzyme specificity and regulation

Enzyme specificity is essential for the accurate and efficient orchestration of biochemical reactions in living systems. Individual enzymes are exquisitely tuned to their particular substrate(s), and often to their reaction conditions, by mechanisms that bind substrates and products with differing affinities. The interaction between the enzyme's active site and the substrate occurs through a number of forces, including hydrogen bonds, electrostatic interactions, hydrophobic effects, and van der Waals interactions.

These binding interactions are at their local optimum during the transition state of the catalyzed reaction, and are complemented by substrate desolvation, small conformational changes in both enzyme and substrate, and the formation of the transition state along the

reaction coordinate. Mutations, allosteric interactions, and co-factors can alter any of these contributions to binding, thus allowing for the integration of regulation and oversight of activity. Substrate binding and turnover each affect ligand–receptor interactions, and therefore are exquisite regulators of metabolic flow.

Enzymatic activity can also be modulated by effector molecules that bind to sites away from the active site. These allosteric sites and their effector molecules can be regarded as special instances of additional ligand–receptor interactions that affect the binding of ligands to the enzyme's active site. Reaction cycles and maps of protein–protein interactions can thus be viewed as special functions built on the general framework of ligand–receptor interactions. Effector-induced stabilization of different states within the same enzyme influences the reaction coordinate of an enzymatic step and can replace substrate inhibition or exhaustion as the evolutionary mechanism of choice. Substrate binding, turnover, and allosteric regulation therefore represent a highly interlinked ensemble of processes within metabolism.^[66, 67, 68, 69]

Cofactors, coenzymes, and prosthetic groups

Throughout nature, the range of chemical reactivity exhibited by many enzymes is enhanced through the involvement of additional components that are required for activity. These components may vary in size and structure from simple metal ions to complex organic compounds. The latter group of molecules either participate directly in the chemical reaction or may simply facilitate binding by providing functional groups that are not present in the enzyme's active site, even though they possess a closely similar structure. Molecules that enter into a reaction and are modified during the process are termed as cofactors. Some cofactors are loosely bound and can dissociate from the enzyme when the reaction ceases. In contrast, others remain attached to the enzyme throughout the reaction; these are called prosthetic groups. Together with the enzyme, these cofactors form an active holoenzyme. Molecules such as NAD⁺, FAD, coenzyme A, lipoate, and thiamine are large complexes that remain firmly associated with the enzyme and are called coenzymes. These coenzymes do not possess the properties of substrates because they are not consumed in the reaction.

Though they are not strictly regarded as coenzymes, other much smaller molecules, such as biotin and pyroxidine phosphate, however, are generally classified as coenzymes because they also exhibit certain coenzymic properties. For example, they occupy a pivotal role in a particular stage of the catalytic cycle, their presence results in a higher catalytic efficiency and released intact from the enzyme at the end of the reaction. The only difference is that because of their small size they can easily mingle with the enzyme outside the active site and thus, escape accountability as coenzymes. [70, 71, 72, 73]

Industrial and medical enzyme applications

Many enzymes are highly sensitive to changing conditions. Their properties can be modified by (1) using different natural sources, (2) combining subunits from different species, (3) crossing species barriers, and (4) using artificial evolution techniques. These considerations also apply to the use of enzymes in industry and medicine. Industrial applications exploit the catalytic power of enzymes to accelerate specific transformations without the need for harsh reaction conditions or long reaction times.

Enzymes have been safely used in detergents for more than 30 years, optimizing cleaning processes at low temperatures and eliminating stubborn stains. Enzymes that hydrolyze starch need to be added during beer production to favor maltose and glucose production, thereby producing liquor with a less bitter taste and a higher alcohol concentration. Moreover, lipases added to washing powder dissolve grease stains in domestic laundry and facilitate textile manufacturing processes. Amylases and proteases are abundantly produced and used in humans for digestion and enzyme replacement therapy, respectively. A more recent approach is the incorporation of new pathways into microorganisms producing high-value products, such as medicines, plastics, or biofuels. Enzymes are also the tools of choice in sugar analysis because they show great sensitivity and specificity. [74, 75, 76, 77]

Chapter - 5

Carbohydrates and Cellular Communication

Biochemistry concerns the forces and interactions that govern molecular structure and dynamics underlying cellular communication, communication networks, and the cellular events of organismal life. Carbohydrates serve as recognition sites in membranes for signaling and transport; the study of enzyme-substrate binding has revealed fundamental properties of biological catalysis; metabolic networks display interesting features of balance, adaptation, and control.

Information encoded within hereditary material guides the assembly of proteins and, with enzymes, the processes of life. Investigations into pathways of metabolic energy capture, reserves in ATP, the routes of energy conversion during biosynthetic processes and in the transmission of signals, and those processes regulating catabolic and biosynthetic flux bring forth major aspects of biochemistry. A broad representation of current understanding and knowledge within biochemistry illustrates depth through the integration of chemical and biological topics in diverse areas [78, 79, 80, 81].

Structure and classification of carbohydrates

Carbohydrates differ in the number of constituent units and can be classified as monosaccharides, oligosaccharides, and polysaccharides. Monosaccharides constitute the simplest form. Oligosaccharides typically range from three to nine units and include trisaccharides, tetra saccharides, and so on. When more than nine monosaccharide subunits are present, the term polysaccharide is used. Monosaccharides and oligomers can be further subdivided into those that possess an aldehyde (aldoses) or keto (ketoses) functional group. Monosaccharides can exist in either the open-chain (linear or acyclic form) or cyclic (ring

shaped) form. Although the cyclic forms account for more than 99 percent of the total, it is important to recognize that the open-chain forms play a key role in glycosylation and interconversion reactions. The cyclic form of monosaccharides can exist as an equilibrium mixture of two anomeric forms: α (with the anomeric hydroxyl group at the opposite side of the ring from the CH_2OH group) and β (with the anomeric hydroxyl group on the same side of the ring as the CH_2OH group).

Because they are often involved in informational processes *in vivo*, oligosaccharides and polysaccharides serve as recognition sites for proteins and for cell–cell signaling. The complex patterns of oligosaccharide chains and their ligand–receptor interactions have recently emerged as areas of intense investigation. The structures of several glyco-conjugate classes have been determined. These include glycoproteins, glycolipids, and proteogly-cans. Carbohydrates play a key role in a variety of diseases such as streptococcal glomerulonephritis, bacterial sepsis, and influenza. Changes in glycopathways have shown diagnostic potential, leading to the emergence of a novel research discipline called glycomics. [82, 83, 84, 85]

Glycoproteins and glycolipids

Play essential roles in biological membranes, particularly in cell–cell recognition and signaling. Membrane glycoproteins contain covalently attached carbohydrate moieties; glycoprotein structures fall into two categories. N-Glycans are oligosaccharides linked to the nitrogen of asparagine side chains, whereas O-Glycans are added to the hydroxyl oxygen atoms of serine or threonine. Glycolipids consist of hydrophilic polar head groups and nonpolar tails, which can be saturated or unsaturated fatty acids. The polar head group is either a single carbohydrate or a branched oligosaccharide. Membrane glycolipids are also asymmetrically distributed and play essential roles in protecting the cell from degradation and in cell–cell recognition.

The surfaces of a variety of mammalian cells display an array of carbohydrate sequences of widely varying composition as part of glycoproteins and glycolipids on their membranes. These complex carbohydrates confer a distinctive characteristic to each type of cell,

enabling cells to recognize and communicate with other cells. Signals sent between cells may trigger cell division, indicate that a cell is about to die, or stimulate the secretion of a particular product. Carbohydrate sequences within glycoproteins and glycolipids have been implicated in a variety of important phenomena, including differentiation of tissues during embryonic development, the ability of bacteria and viruses to infect cells, and organ graft rejection. Cell-surface glycoproteins also have important roles in the immune system. [86, 87, 88, 89]

Cell recognition and signaling

Key roles in cellular recognition and signaling are played by glycoproteins and glycolipids, whose structural diversity supports biological functions: information storage, molecular recognition, modulation of cell adhesion, and participation in immune responses. Disruption of glycosylation patterns is linked to a range of diseases – cancer, diabetes, and neuropathies – making glycans potential biomarkers for diagnostic and therapeutic applications.

Biological recognition events involve the selective interaction of a carbohydrate (the ligand) with a protein receptor. These interactions are usually weak and reversible, permitting transient signaling. The shape, size, and charge of the saccharide complement those of the binding site. The contact surface is greater in glycoprotein-ligand than in lectin-ligand complexes. Signaling cascades downstream of ligand–receptor binding regulate various physiological processes such as immunity, cell growth, and development. For example, polysaccharide ligands of bacteria and viruses are recognized by mammalian lectins. The signal is propagated through intracellular kinases.

Cross-talk across the pathways of multiple signaling systems allows cells to integrate different signals into a coherent response. For example, physical or pathogenic stress triggers several parallel signal transduction mechanisms such as stimulation of salicylic acid biosynthesis and transcriptional activation of related genes. Activations of these pathways by both external and internal signals coordinate triacylglycerol accumulation and stress tolerance in plants. [90, 91, 92, 93]

Carbohydrates in health and disease

Alterations in glycan expression patterns and glycosylation pathways have been linked to various diseases, including cancer, neurodegenerative disorders, diabetes, and viral infections. Because of their increased abundance or unnatural structures, the resultant aberrantly glycosylated glycoconjugates can serve as tumor-associated carbohydrate antigens and be recognized by the immune system. These antigens have been explored as targets for vaccines against cancer, and their corresponding antibodies have shown potential in cancer immunotherapy. Furthermore, glycan patterns can serve as disease biomarkers, with changes occurring even before a diagnosis. For example, alterations in the glycosylation of immunoglobulin A have been proposed as biomarkers for Parkinson's disease, and serum glycomic profiling could assist in the early diagnosis of gastric cancer. Recent advances in glycoproteomics and glycomics enable the more sensitive profiling of glycans and their structures.

A better understanding of glycan biosynthesis and glycan-associated pathways can add crucial knowledge to the field of glycobiology and help elucidate other diseases. Multiple changes in abnormal glycan patterns have been linked to various other diseases. By modifying specific enzymes involved in glycan biosynthesis, chemical chaperones can restore function to some degenerated glycoproteins in Alzheimer's disease, with aberrant glycosylation being ameliorated during development. A comprehensive analysis, including glycogenomic studies, has confirmed that, at least in early-onset Alzheimer's disease, a chronic desaturation of the N-Glycosylation pathway occurs in a tissue-specific manner, affecting many proteins. The next step remains to correlate changes in glycan profiles with phenotypic progression. [94, 95, 96, 97]

Chapter - 6

Lipids and Biological Membranes

Lipids comprise a diverse range of molecules that share an amphipathic property; they possess both hydrophobic and hydrophilic regions. The principal classes of lipids-fatty acids, sterols, phospholipids, and sphingolipids-fulfill distinct functions in biological systems. Fatty acids are primarily sources of chemical energy, whereas sterols and sphingolipids contribute to cell membrane structure and support signaling. Phospholipids are major components of biological membranes, forming bilayers that separate cells and cellular compartments from aqueous environments. The amphipathic behavior of lipids governs membrane organization, transport processes, and the spatial distribution of membrane proteins. Lipids such as prostaglandins, leukotrienes, and lipoxins function as signaling molecules, whereas nitric oxide and carbon monoxide serve as parasitic intermediates. Other lipids act as storage or signaling precursors. Hydrolytic and biosynthetic pathways of lipids connect their catabolism and anabolism to that of carbohydrates and amino acids.

Lipids are key participants in defense mechanisms and serve as signal molecules in cellular communication. In addition to acting as participants in, or sensors of, metabolic processes, some distinct and highly specific lipid probes are chemically synthesized to study, monitor, or alter cellular processes. The principal classes of lipids-fatty acids, sterols, phospholipids, sphingolipids-exhibit their characteristic properties; however, lipids are not classified according to a uniform definition. Rather, the diversity of lipids reflects their role in living systems as molecules that are soluble in organic solvents, amphipathic, poorly soluble in water, and non-volatile. Some lipids, such as fatty acids, sterols, phospholipids, and sphingolipids, exhibit behavior

consistent with these attributes, whereas other molecules, such as triacylglycerols and polymeric waxes, may often defy these expectations. Nonetheless, the biological consequences of these molecular constitutional variations, as opposed to functional importance, override definitions based solely on these attributes [98, 99, 100, 101].

Lipid classes and properties

Lipids can be classified into four main groups based on structure and biological role: fatty acids, sterols, phospholipids, and sphingolipids. Fatty acids constitute the simplest lipids and usually occur in nature as esters or derivatives in which the carboxyl group has been replaced by another functional group. Sterols have a characteristic fused-ring structure and play important roles in membrane structure and fluidity as well as serving as precursors for signaling molecules. Phospholipids are important structural components of cell membranes, while sphingolipids have varied roles in membrane structure and cellular recognition.

Composed of hydrophobic long-chain hydrocarbons, the main functions of lipids lie in energy storage and as structural components of biological membranes. Despite their chemical variety, they share structural principles that can be related to function. A characteristic structural feature of many lipids is the presence of two regions—one hydrophobic and the other polar—as indicated by an arrow. This attribute makes lipids the only class of biomolecules that can spontaneously form anisotropic structures, such as bilayers and monolayers. Fatty acids can be sub-divided into three categories: saturated (having no C-C double bond), monounsaturated (with one C-C double bond), and polyunsaturated (having more than one C-C double bond).

Fatty Acid Structure

Fatty acids typically contain an even number of carbon atoms (most commonly between 14 and 24) and range from being unbranched and saturated to branched and polyunsaturated. The melting temperatures of fatty acids decrease with increasing unsaturation and

decrease with increasing length in the alkyl chains. Fatty acids are amphipathic in nature and form micelles at low concentrations and a bilayer at higher concentrations. Sterols such as cholesterol and ergosterol provide membranes with structural support, while triacylglycerols (fats and oils) are the primary form for storing energy in living organisms. ^[102, 103, 104, 105]

Membrane structure and dynamics

Biological membranes, composed largely of lipids and proteins, permit functional compartmentalization in cells and organelles. Phospholipids comprise the most abundant class of membrane lipids, which also contain cholesterol and, in the case of certain membranes, sphingolipids. Established forces drive the spontaneous formation of lipid bilayers, the basic structural elements of membranes. These bilayers exhibit dynamic properties, allowing transient and stable protein-lipid interactions. A diverse repertoire of transmembrane, integral, and peripheral membrane proteins performs membrane-spanning functions. Membrane dynamics dictate mechanisms of lateral transport through the bilayer and transmembrane transport of solutes.

Membranes serve as selective permeability barriers that control the exchange of matter, energy, and information between the compartments they delimit. The underlying physicochemical mechanisms govern passive and active transport across membranes and the process of membrane fusion. Such dynamics also support the lateral flow of surface constituents, which is intrinsically tied to the facilitation of membrane-associated biochemical reactions. The organized topologies of membranes promote the establishment of local reaction environments that have unique physicochemical properties. These microenvironments both catalyze chemical transformations occurring within the membrane and modulate the functions of membrane-spanning proteins. ^[106, 107, 108, 109]

Lipid signaling molecules

Biochemical signal transduction involves the participation of hormones and physical factors in cell communication. Hormones are secretory compounds that regulate growth, metabolism, source–sink relationships, and the response to environmental signals, for example,

photoperiod. A response to a given hormone requires the presence on the cell surface of a corresponding receptor specific to that hormone, which detects it at very low concentrations. Receptors are proteins embedded in all forms of life.

The major classes of plant hormones include auxins, gibberellins, cytokinins, ethylene and abscisic acid, in addition to several others that have been subjected to less scrutiny. These plant hormones are synthesized in different organs, transported through the vascular system, and act at very low concentrations, resulting in marked effects upon their binding to the respective receptors.

Moreover, different hormones can provoke opposite effects (antagonism) or function cooperatively (synergism). Distinct hormone signaling pathways integrate with others that sense developmental, photoperiodic, seasonal, and environmental cues. Ligand–receptor interactions trigger a signaling cascade that leads to a physiological response within the target cell, such as gene expression or enzymatic activity. Hormones are at work information transferred from roots to leaves, leaves to roots, and also from one part of the plant to another. In addition to these hormones, animals have several signalling molecules formed from lipids, which play an important role in cellular communication and signaling during fertilization and during inflammation [110, 111, 112, 113].

Lipid metabolism and disorders

Metabolism of lipids and sterols: The metabolic pathways of fatty acid oxidation and biosynthesis, and associated disorders. Lipids occupy a central position in metabolism, as the first port of call for energy extraction during periods of nutrient deprivation or starvation. Free fatty acids are extracted from lipid stores in adipocytes and transported to mitochondria for oxidative catabolism. The mechanisms of how the products of beta-oxidation enter mitochondrial respiration and ATP generation are established. Lipogenesis, the synthesis of fatty acids, takes place in triacylglycerol-rich tissues, primarily the liver and adipose tissue, when carbohydrates are plentiful. Fatty acids are stored as triacylglycerols for later mobilization and energy release. Many physiologically active lipids also require fatty acid substrates for their

biosynthesis. Cholesterol, the key steroid in mammals, is synthesized by multiple pathways. In addition to its role as a membrane constituent and precursor of steroid hormones, cholesterol is the precursor of bile acids, the major excretory product of cholesterol metabolism. Changes in lipoprotein transport and in the activity of the cholesterol biosynthetic pathway are central to the development of atherosclerosis.

Fatty acid β -oxidation, a key step for extracting energy from lipid reserves, occurs in the mitochondria of various tissues (heart, liver, skeletal muscle) during periods of starvation or fasting. The free fatty acids released from adipose tissues by the action of lipases are transported into the mitochondria or peroxisomes for degradation, generating acetyl-CoA. The acetyl-CoA thus produced enters the Krebs cycle for energy generation, releasing reduced coenzymes that drive the synthesis of ATP. The major regulated step in fatty acid β -oxidation is the transport of long-chain fatty acids into the mitochondria. Fatty acid β -oxidation is also used to eliminate excess fatty acids from the cell, as in the case of β -oxidation of very-long-chain fatty acids that takes place in peroxisomes or the β -oxidation of branched-chain fatty acids in the mitochondria of plants and some fungi (as part of the glyoxylate cycle). ^[114, 115, 102, 116]

Chapter - 7

Nucleic Acids and Genetic Information

Nucleic acids, DNA and RNA, contain genetic information in the sequence of their bases which is vital for life. Deoxyribonucleic acid (DNA) is the genetic material in most organisms, while some viruses use ribonucleic acid (RNA) to encode their genetic information. The flow of information through nucleic acids is central to molecular biology; DNA directs RNA synthesis, and RNA guides the synthesis of proteins by ribosomes. Nucleic acids are also involved in protein synthesis and regulation, serve as expansion joints in RNA secondary structures, and provide five-carbon sugars for all other nucleotides. Analysis of DNA has led to a clearer understanding of biological processes and remains a key area in biochemistry. The digital nature of its base sequence has made DNA a candidate for information storage and transfer and enabled the development of digital storage and homology-based analysis methods in genome sequencing. Optical microscopy using fluorescent probes allows the identification and localization of specific sequences in nucleic acids and chromosome structure. The sequence of bases in DNA encodes genetic information essential for the biosynthesis of RNA and proteins in a cell, and it is this sequence that determines the characteristics of an organism. In a cell, each pair of bases (A-T, G-C) also serves as a template for the synthesis of its complementary strand of DNA by base-pairing; thus, the genetic information is duplicated with high fidelity and remains stable during cellular division.

The overall shape and structure of DNA support its stable storage of information as genetic material. The bases in the DNA strands form complementary hydrogen bonds (adenine pairs specifically with thymine, guanine with cytosine) throughout the molecule, adding to its structural stability without altering its folding pattern during DNA

replication. Other structural factors associated with DNA allow it to occupy a small region without condensing too tightly: the directionality from the 5'- to the 3'-end of the DNA strands, the supercoiling effect of winding during DNA replication, the presence of histones that interact with the negatively charged phosphate groups through electrostatic interactions, and the formation of nucleosomes that provide spatial and conformational organization. Genomes organize eukaryotic DNA into chromatin, with higher order packing involving other nuclear proteins for compaction. [117, 118, 36, 119]

DNA and RNA structure

DNA and RNA biosynthesis rely on ribonucleotides and deoxy ribonucleotides, respectively. Ribonucleotides contain ribose in the sugar phosphate backbone; DNA incorporates 2-deoxy-ribose, in which the hydroxyl group on the 2' position is absent. The nucleotides can be linked by phosphodiester bonds to produce strands of RNA or DNA. These single-stranded molecules can form specific base pairs by hydrogen bonding between the complementary bases with different hydrogen bonding patterns. In RNA, uracil pairs with adenine, whereas in DNA, adenine pairs with thymine. The presence of the 2' hydroxyl group in RNA makes it more prone to hydrolysis and creates steric constraints that limit RNA to a single strand. RNA, however, is often able to fold into secondary and tertiary structures that perform important biological functions. DNA can typically exist as a double helix in which the pyrimidines (cytosine and thymine) in one strand pair with the purines (guanine and adenine) in the opposite strand. The 5-, 3-, and 3-, 5- strand orientation of the DNA helix allows for semi-conservative replication of genetic information.

Assessment of DNA and RNA biosynthesis (Chapter 5) is important for understanding how components of the DNA helix function and why specific structural features distinguish DNA from RNA [120, 121, 122, 123].

Genome organization and regulation

The organization and regulation of genomes are crucial for controlling gene expression and determining cell fate. Eukaryotic nuclei, mitochondria, and plastids contain extensive chromatin, which

consists of DNA and protein. Chromatin structure is dynamic; chromatin remodeling exposes DNA binding sites and is essential for mitosis, meiosis, and transcription. Regions of the genome are transcriptionally active (euchromatin) or inactive (heterochromatin), and both core promoters and distal regulatory elements are involved in regulating gene expression.

In certain animals, an epigenetic phenomenon called dosage compensation equalizes gene dosage between the sex chromosomes of males and females. In mammals, one of the two X chromosomes in females is randomly inactivated, a process called X-inactivation. Stochastic events during early development determine which X chromosome is retained in a transcriptionally active state, and the stable repression of the inactive X is facilitated by the action of long non-coding RNAs, such as X-inactive specific transcript (XIST).

Transcriptional regulation in both prokaryotes and eukaryotes can occur at multiple levels: initiation, elongation, and termination, as well as co-transcriptional modification in eukaryotes. The presence of transcriptional activation and repression can influence pol II recruitment and elongation. In multicellular organisms, transcriptional regulation is essential for cell differentiation during development—the establishment of embryonic lineages with distinct patterns of gene expression that determine cellular identity and function. The development of embryonic stem (ES) cells and induced pluripotent stem (iPS) cells is generally associated with a reduction in chromatin condensation and is characterized by a transcriptional program closely resembling that of the early embryo. ^[124, 125, 126, 127]

DNA replication and repair

Are intricately connected processes that preserve genetic integrity. Replication begins with a specialized enzyme, DNA-dependent DNA polymerase, synthesizing new strands complementary to parental templates in 5' to 3' direction. Multiple DNA polymerases collaborate, often in large protein complexes, forming replication factories at replication forks. Prokaryotic circular genomes replicate from a single origin, producing two coiled daughter DNAs, while eukaryotic linear chromosomes replicate from multiple origins, requiring an array of

specialized proteins for directionality and bidirectional synthesis. Repair mechanisms responding to internal and external DNA alterations are crucial for long-term genetic fidelity, detecting damage signals and activating enzymatic systems that replace erroneous bases or strands.

DNA replication and repair require an array of proteins, including helicases, primases, single-stranded binding proteins, and DNA-dependent DNA polymerases, with the key replicative enzymes constituting a DNA polymerase clamp loader complex. Prokaryotic circular genomes undergo asymmetric replication from a single origin, producing two coiled daughter DNAs, while eukaryotic linear chromosomes replicate bidirectionally from multiple origins, relying on a battery of specialized proteins to ensure correct directionality and coordinate. Yet, despite the precision of DNA replication, DNA sequences undergo frequent changes. Furthermore, DNA in living organisms is constantly subjected to internal and external alterations that threaten its integrity. Consequently, a variety of mechanisms have evolved to detect DNA damage and initiate appropriate repair systems.

[128, 129, 130, 131]

RNA processing and function

Protein synthesis depends upon an intermediary RNA molecule transcribed from the DNA at each gene locus. This messenger RNA (mRNA) carries the information specific to each protein from the nucleus to the cytoplasm, where ribosomes translate this sequence into a polypeptide. Not all RNA transcripts, however, are translated into proteins; many act directly in RNA form in various aspects of cellular metabolism. Therefore, the production of functional RNA pieces must be considered in addition to synthesis of mRNA. A typical gene (comprising a transcribed region surrounded by regulatory and often noncoding sequences) consists of three major parts that undergo distinct processing steps: the transcribed region, or coding region, which specifies the sequence of the corresponding polypeptide; the 5' and 3' noncoding regions that determine the location of initiation and termination of the transcript; and the intervening sequences of DNA, called introns, that are transcribed into pre-mRNA but removed during

processing before the mRNA is transported to the ribosomal site of translation.

Modifications that occur during RNA processing include addition of the 5' cap and the 3' poly (A) tail, as well as splicing (the removal of introns). The 5' cap is a 7-methylguanylate structure linked to the first nucleotide of the transcript by a 5'-5' triphosphate linkage. The 3' poly (A) tail of the mRNA consists of about 200 adenylate residues added post-transcriptionally by poly(A) polymerase. Once processing is complete, the mature transcripts contain 5' and 3' untranslated regions (UTRs) and the sequence encoding the polypeptide. Other types of RNA play a crucial role in expression of genetic information without coding for protein. [132, 133, 134, 135]

Chapter - 8

Metabolism and Bioenergetics

Map catabolic and anabolic pathways; connect to energy currency and metabolic integration. Catabolic and anabolic pathways Living systems require a constant supply of free energy to maintain order and internal organization, as described by the second law of thermodynamics. The degradation of biological macromolecules to smaller components is energetically favorable, and drives the synthesis of energy-rich adenosine tri-phosphate (ATP) molecules from adenosine diphosphate (ADP) and inorganic phosphate. Pathways that release free energy, collectively termed heterotrophic catabolism, are carried out by organisms that depend on other life forms for food. Pathways that utilize free energy, collectively termed autotrophic anabolism, are responsible for the synthesis of complex biological macromolecules from simple precursors. Together, catabolism and anabolism constitute metabolism.

Several important principles unify the large number of individual metabolic pathways in living systems. Chief among these is the concept of metabolic flux, which underlies cellular respiration and drives adaption to changing environmental conditions. Metabolic flux is typically quantified by changes in the concentration of a pathway intermediate over time, and can thus be represented as the first derivative of its concentration. Analogous to the velocity of a moving car, flux refers to the volume of an intersection at an instant in time, and actually specifies a rate of change. The sum of fluxes through all pathways in a specific system equals zero. In doing so, metabolic flux can be used to determine how carbohydrates are synthesized, consumed, converted to fat, or exported to other tissues. Control analysis, an experimental approach that identifies which enzymes are rate-limiting for a pathway, reveals how metabolism is regulated [136, 137, 138, 139].

Catabolic and anabolic pathways

Biochemical pathways can be broadly classified as catabolic - energy-releasing pathways that degrade molecules - or anabolic - energy-consuming pathways that synthesize molecules. Some catabolic pathways convert larger, less-well-defined cellular components into even larger, but better-defined metabolic intermediates and small-molecule end products (e.g., fermentative catabolism) in a manner that generates very little usable energy. In contrast, the plateau in exothermic energy for respiration reflects a complete oxidation of fuel cells accompanied by the flocculated (glucose) end product, carbon dioxide. Nevertheless, catabolism can be homeostatic when excess glucose is converted to glycogen and stored in liver cells.

Microorganisms metabolize organic fuels using many different pathways. Thermodynamically, the large changes in standard Gibbs free energy associated with the glycolytic and pentose phosphate pathways support these processes, and negative $\Delta G'$ values indicate that they are also regulated stepwise via Cox-Reducing Dissolved Organic Matrix-Facilitated Microbial Electrosynthesis in Natural Reservoirs. So, although microorganisms may utilize the same small dissolved source molecules, the sequence of metabolic steps employed depends on their evolutionary background in connection with the biophysical structure of the natural habitat they occupy. The absence of electron-microscopic evidence of long-distance electron-linked cell connection has led to a resurgence of interest in acid-alkaline-atmospheric-thermophilic biochemistry at elevated temperatures and oxidation same stability as a foundation for further studies on biological basis of substrate charge generation and oxidation. [140, 141, 142, 143]

ATP generation and utilization

Metabolism is the integrated network of bio-transformations that underlie all forms of life. Cells must continually extract energy from the environment to maintain the conformational and dynamic integrity of their constituent and functioning biomolecules and to drive the synthesis of biomolecules and assemblies that are both structurally

complex and highly organized. These requirements are met by the generation and utilization of adenosine triphosphate (ATP). The set of ATP-generating catabolic pathways is referred to as amphibolic pathways, and it comprises glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation in aerobic organisms and fermentation in anaerobes. At the same time, biosynthetic flux through the citric acid cycle is tightly controlled and often reversed to replenish precursor molecules needed for the growth and maintenance of living systems.

The flow of metabolites through the amphibolic pathways is regulated with respect to a number of factors, such as substrate availability and demand for ATP. In eukaryotic cells, the pathways responsible for ATP synthesis are compartmentalized, with glycolytic enzymes and the pyruvate dehydrogenase complex located in the cytosol, ATP synthase in the inner mitochondria membrane, and TCA-cycle dehydrogenase in the mitochondrial matrix. The local concentration of ATP and the associated free energy change drive the phosphorylation of adenosine diphosphate (ADP) by inorganic phosphate, which is catalyzed by ATP synthase. The other major source of reducing equivalents, NADH, is generated during the dehydrogenation steps of glycolysis and the TCA cycle. ^[144, 145, 146, 147]

Metabolic integration and control

Bioenergetic processes are tightly integrated across tissues, organ systems, and the whole organism. Different organs display specialized pathways, but perturbations in metabolic homeostasis (such as changes in nutrient availability) necessitate regulatory effects to maintain the balance of metabolic fluxes and the integrity of the system as a whole. Such regulation occurs at several intermediate levels, from single pathways to flux balance and topological control (control analysis).

Integration and balancing of metabolic activity are particularly crucial in mammals, since they maintain high body temperatures and are normally incapable of metabolizing storage lipids when fed diets rich in carbohydrates. Integration thus occurs through signals that are transmitted to their specific receptors. Hormones such as insulin, glucagon, epinephrine, norepinephrine, and thyroid hormones play key

roles in fueling and storage processes in mammals. Sensitivity to temperature in ectothermic organisms induces more fundamental variations in whole-animal metabolism, involving entire sets of pathways. [148, 149, 150, 151]

Metabolic adaptation to environmental changes

Successful completion of vital functions requires a continuous supply of energy and reducing power. However, neither ATP nor NADH is stored in substantial quantities. Consequently, biochemically distinct catabolic pathways oxidizing substrates with different redox potentials and meeting cellular energy demands must be activated in a coordinated fashion, ensuring nutrient balance. In multicellular organisms, these routes are regulated across tissues, remaining active at respective set points for minimal maintenance cost. Genomic screening enables identification of control variables for quantitative assessment of individual pathways, revealing flux-balance and control-analysis models through experimental perturbation.

In the Archaea and bacterial domains of life, metabolic pathways are remarkably diverse. These variations reflect adaptation to differing nutrient availabilities and the distinct electrochemical properties of respiratory electron donors and acceptors. Furthermore, metabolic adaptation to extreme environments and energy-axis weakening are of ecological significance. In both eukaryotic and prokaryotic organisms, transition between favorable and less-favorable growth conditions through nutrient shortage, temperature changes, or salt stress is linked to major remodelling of metabolic pathways. The underlying processes involve adjustment of metabolic rates, consumption of reserve substances, and production of waste products. [152, 153, 154, 155, 152, 153, 154, 155]

Chapter - 9

Cellular Signaling and Communication

Biological systems continuously monitor and adapt to changing environments, both internal and external. Cells communicate through physical and chemical signals, ensuring coordinated responses among individual cells and across tissue systems. Signals propagate through networks of specific receptors, transducers, and effectors, which link particular signal classes to specific cellular responses. The specific receptors and downstream interacting molecules ultimately determine the nature of the response. A detailed understanding of cellular signaling networks facilitates drug discovery and risk assessment for disruptions in human health.

Receptors complex transmembrane, Golgi, and other membrane ports in the cell. Different signals bear different chemical structures and concentrations. Gasotransmitters like nitric oxide differ from peptide hormones such as insulin in size and solubility. Gasotransmitters readily diffuse through membranes to receptor proteins that are intracellular. These signals induce fast responses (e.g., vasodilation) but do not modulate gene expression, while peptide hormones trigger slower responses involving the activation of transcription factors. Other signaling molecules, such as ATP, cyclic adenosine monophosphate (cAMP), inositol trisphosphate, diacylglycerol (DAG), and Ca^{2+} , act as second messengers downstream of membrane receptor activation. Evidence from cross-talk among signaling participates in the regulation of the entire network rather than the individual and local responses dictated by the first-acting signal.

Signal transduction mechanisms

Translate extracellular signals into cellular responses through an integrated network of molecules. Signals sensed by membrane

receptors are coupled to intracellular effector proteins that in turn regulate cellular responses. Diverse classes of receptors—including ionotropic receptors, G protein coupled receptors, tyrosine-kinase receptors, and cytokine receptors—detect different signals and transmit them into cells via multiple pathways. Upon activation, these pathways lead to the stimulation of protein kinases or phospholipases that generate lipid-derived second messengers. These messengers participate in diverse processes including the regulation of plasticity in neurons and fertilization in yeast.

Receptor–effector complexes convey signals by altering the activities of other proteins rather than directly affecting the processes regulated by these proteins. Second messengers are intracellular molecules that mediate a shared response stimulated by a large number of different signals. Network-level signal integration gives cells the same phenotypic response to different signals or situations. Phosphorelay circuits, which involve a series of histidine and aspartate kinases, enable distal elements of the signal transduction network to rapidly adapt or switch signal pathways on different input conditions. Ultimately, network-level integration determines how cells respond to external signals. ^[156, 157, 158, 159]

Hormones and receptors

Hormonal signals - extracellular messengers secreted by one tissue and traveling in the blood to modulate responses in other tissues - are central to the control of organismal activity and homeostasis. The operation of the endocrine signaling system depends on the simultaneous presence of a signaling hormone, a regulatory receptor that recognizes only that specific hormone, and a cellular machinery that can execute the commanded process. Importantly, if any of these three elements or the connections among them become faulty, serious malfunctions can occur in body systems. Such imbalances change metabolism, communication, growth, adaptation to environmental variation and even reproduction. Considered collectively, the hormones achieve a high degree of integration and coordination of cellular responses across long distances; hence the term endocrinology received widespread acceptance.

Hormonal signals are broadly classified according to their biochemical nature into three groups: peptide/protein hormones (insulin, growth factors, etc.); amino acid-derived hormones (catecholamines, thyroid hormones, etc.); and steroid hormones (cortisol, sex hormones, etc.). Structural features of these groups influence receptor recognition and responsiveness. Peptide/protein hormones consist of diverse sequences of 3-50 amino acids. For adaptive economy in signaling, these hormones, which are exerting control over diverse physiological pathways, use a few common intracellular mediators. These hormones do not penetrate the target cells but activate extra- and/or intracellular signaling cascades by binding to receptors at the cellular surface. Most internal responses are mediated through cAMP, cGMP or Ca^{2+} as second messengers [160, 161, 162, 163].

Second messenger systems

Calcium ions and inositoltrisphosphate (IP₃) are powerful second messengers that can diffuse rapidly through the cytoplasm and activate multiple effector proteins. Calcium ions are necessary for muscle contractions and trigger exocytosis of neurotransmitters by synaptic vesicles. These ions also regulate the activity of various plasma membrane channels. Calcium ions remain at low concentrations in the cytoplasm ($[\text{Ca}^{2+}] \approx 10-7 \text{ M}$). A calcium gradient exists across eukaryotic membranes, with higher concentrations ($\approx 10-3 \text{ M}$) in the extracellular medium and the lumen of the endoplasmic reticulum. These gradients create a reservoir for powerful neuritogenic Ca^{2+} signals following activation of specific neurotransmitter receptors (e.g., glutamate receptors) or voltage-dependent Ca^{2+} channels.

A fundamental mediator of intracellular Ca^{2+} signals is a phosphoinositide hydrolyzing enzyme. The reaction catalyzed by phospholipase C is at the crossing point of two different signaling pathways: the oxygen-stacked pathway and the phosphoinositide pathway. Phosphoinositides (PI) principally function as regulators of membrane traffic and cytoskeleton–membrane interactions. Essentially, PI are sorted in specific membranes within the cell that express the specific PI kinases. Phosphoinositides can also act as

bulges at the membrane surface and aid the function of membrane assigner proteins (e.g., to localize the proteins that specifically bind to these DB for the required signal response). Furthermore, IP₃ also helps in inducing intracellular Ca²⁺ signals.

Ion channels in the endoplasmic reticulum membrane (InsP₃ receptors) possess both ligand-binding and Ca²⁺-release channels that cause local saltation of Ca²⁺ into the cytoplasm in a manner that is analogous to action potentials in neurons or cardiac muscle cells. The opening of InsP₃ channels releases Ca²⁺ into the cytoplasm. Such local influx of Ca²⁺ can also activate nearby Ca²⁺-induced Ca²⁺-release channels of the ryanodine type, also gonded in the cerebellum in neurons, that reside in intimate foldings of the muscle membrane [¹⁶⁴, ¹⁶⁵, ¹⁶⁶, ¹⁶⁷, ¹⁶⁸].

Signal integration and cross-talk

Living cells usually respond to a variety of signals simultaneously. The connection of signaling networks permits complex responses. For instance, in glucose deprivation, cells alter many metabolic pathways through a single transcription factor. Conversely, concurrent activation of diverse pathways, such as survival, proliferation, and apoptosis, enables the precise control needed for the appropriate cellular response. Understanding how signals originating from different receptors influence each other is an active area of research, and the general mechanisms by which diversification of cellular responses is attained and the connectivity of signal-transduction networks are combined are beginning to emerge.

Endocrine signaling involves hormones acting as long-range messengers. Peptide hormones, such as insulin, require specific membrane receptors, while gas-phase hormones, such as nitric oxide, diffuse enzymatically to target cells. Peptydine hormones are synthesized as large precursors in the endoplasmic reticulum. Following glycosylation and proteolytic processing, they are stored in secretory vesicles from which they are released upon stimulation. Rapid activation of particulate hormone receptors and subsequent mitogen-activated protein (MAP) cascades constitute one general mechanism for signaling. Other classes of hormones, such as the

steroid hormones, diffuse readily across cell membranes, bind intracellular receptors, and act as transcription factors. Recent work on the interplay between steroid hormones and peptide-derived messengers has unveiled a novel aspect of steroid-hormone receptor action: the regulation of peptide-hormone receptor function by steroid-hormone-induced phosphorylation of the receptor.

The spatial and temporal aspects of signal transduction permit the integration of local signals, where the time course of a signal may determine the final response. The co-regulation of β -adrenergic signaling and induction of β -adrenergic desensitization by inflammatory mediators exemplifies the way in which the response of one pathway can no longer trigger the typical physiological response. The φ - and aberrant-processing model of coding suggests that the time course of the signal is equally important when considering the ability of two signals to trigger disparate cellular responses. By integrating diverse nature and origin signals, cells maximize their ability for precise control of the final outcome as well as survival [169, 170, 171, 172].

Chapter - 10

Biochemical Technologies and Analytical Methods

Separation methods underpin the analysis of biological samples and the development of other biotechnological applications. A range of chromatography and electrophoresis techniques exploit different physical or chemical interactions to separate solutes or particles in liquid or gel environments.

Chromatography encompasses a collection of separation methods that exploit the differential partitioning of components between a stationary phase and a mobile solvent phase. Chromatography is generally classified based on whether the stationary phase consists of a solid packing (adsorption chromatography) or a liquid film (partition chromatography) and whether the mobile phase is gaseous or liquid. Distinct types of adsorption and partition chromatography include ion-exchange chromatography, affinity chromatography, and HPLC. Thin-layer chromatography operates without a separate column and is often applied to visualize small, apolar molecules such as lipids or pigments.

A complementary group of methods, including electrophoretic techniques, separates solutes based on size or charge. Polyacrylamide gel electrophoresis (PAGE) and its variant, SDS-PAGE, resolve biopolymers such as proteins and nucleic acids. Separation resolution generally increases with the size of the gel medium or the number of dimensions involved. High-resolution two-dimensional PAGE combines charge- and size-based separations, while capillary electrophoresis exploits both size and increased transport efficiency to enhance resolution and throughput without the need for a supporting gel matrix [173, 174, 175, 176].

Chromatography and electrophoresis

Numerous analytical techniques exist that separate the components of mixtures based on distinct physiochemical properties. Paper and

thin-layer chromatography use a stationary phase, often more polar than the mobile phase, to separate compounds distinctively retained by hydrogen bonding or dipole-dipole interactions. Gel filtration or size-exclusion chromatography separates soluble components, such as proteins, based on their mass and size, with smaller components eluting later. Partition chromatography employs two immiscible liquid phases with different polarities to separate components based on their distribution between the two phases. Ion-exchange chromatography uses charged groups covalently attached to insoluble polymers as a stationary phase to separate components based on net charge at a given pH. All of these techniques can be combined with mass spectrometry to enhance sensitivity and information content.

Electrophoretical methods also exploit differences between the analytes. The migration speed in an electric field is determined by the interacting charge or charge density and by friction. Polypeptides exhibit charge-over-mass ratios that span a wide range, which is exploited in SDS-PAGE. RNA and DNA can also be resolved using agarose gel electrophoresis, while smaller oligonucleotides are better separated on polyacrylamide gels. Capillary electrophoresis can analyze a large number of samples in parallel and a variety of compounds, from proteins to hardly charged small organic molecules; it can even be coupled with mass spectrometry. [177, 178, 179, 180]

Spectroscopic and imaging techniques

Chromatography separates a mixture into its components by partitioning them between a mobile phase and a stationary phase that remains fixed in place. After separation, the identity and amount of each component are determined by spectroscopic or imaging methods. Spectroscopy exploits the interaction between electromagnetic radiation and matter to provide the qualitative and quantitative information necessary for identifying the components present in a sample after chromatographic separation.

Common spectroscopic techniques include UV-visible spectroscopy, fluorescence spectroscopy and microscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry. UV-visible spectrophotometry detects absorption of UV and visible light by

chromophores such as nucleic acids, aromatic amino acids, and cofactors with conjugated systems. Fluorescence spectroscopy detects emission of light by a colorant in a sample that has been excited by energy with a shorter wavelength. Fluorescence microscopy is a visualization technique that uses fluorescence to detect picomolar concentrations of fluorescently tagged biomolecules in living or fixed whole cells and tissues. In contrast, nuclear magnetic resonance (NMR) spectroscopy detects the nuclear spin state of certain atomic nuclei in a sample exposed to radiofrequency energy in the presence of an external magnetic field. Deuterium (²H), phosphorus (³¹P), carbon (¹³C), and nitrogen (¹⁵N) are among the natural isotopes detectable by NMR spectroscopy; the multiple energy levels associated with ¹H nuclei permit NMR spectroscopy of biological macromolecules. Mass spectrometry (MS) measures the mass-to-charge (m/z) ratio of ionized molecules of different mass, providing the identity of the components present in a sample. MS can also provide structural information when tandem MS is applied to a mixture, supplying the mass of the fragment ions after collision-induced dissociation of the molecular ions ^[181, 182, 183, 184].

Omics technologies in biochemistry

Genomics, proteomics, metabolomics, and associated transcriptomics, fluxomics, and lipidomics represent the major ‘omic’ disciplines now standard in life science research. Their continued rapid advancement is profoundly influencing both biological discovery and the practice of biochemistry, and several are now established tools of diagnostics and therapeutics. Genomics uses DNA sequencing, intelligent querying of multiple genomes, and comparisons with phylogenetic data to derive insights into evolutionary relationships, specific metabolic capabilities, and the genetic bases of trait variation. The application of next-generation sequencing technologies is transforming genomic characterization. Empirical transcriptomics provides extensive information about transcript presence and abundance, while systems-biology approaches exploit relationships among whole-transcript profiles and physiological and environmental data to infer functional relationships among transcripts. A range of tools now links transcript profiles directly to metabolic flux profiles.

The mass-spectrometric analysis of protein abundance complements the wealth of information available from the biosynthetic genome and transcriptome blueprints, including identified secretome components and transmembrane proteins. Supervised methods seek to identify the proteins that best discriminate between sample classes whereas, patterns aim to discern response-associated expression modules irrespective of pathway context. Although metabolomics provides a snapshot of active metabolism and requires no prior information, its interpretation remains difficult.

The mass-spectrometric profiling of metabolic processes is an active area of development, particularly for organic toxins, drug metabolism, and cancer- and risk-specific pathways. Emerging non-derivatizing, rapid methods facilitate the identification of lipid and nucleobase patterns; inclusion in unweighted biogenic databases increases speed and information content. Within this arena, metabolite profiling has established links to chemical plant-herbivore interactions, insect development, disease-associated phenotypes, and the ecology of root-associated microorganisms. Comprehensive data depositories now interface with pre-existing biological databases, facilitating data mining and integration, and securing databases continue to stimulate standardization and quality control among laboratories. Indeed, expert-approved web-based tools are now available for the analysis of transcriptomics and proteomics datasets, reflecting the central role of such high-throughput applications in contemporary biological research. ^[185, 186, 187, 188]

Data analysis and bioinformatics tools

The analysis of multifactorial data-behavioral, transcriptomic, proteomic, or metabolomic-relies on appropriate statistical methods, integrative approaches exploring data from multiple sources, and the correct interpretation of obtained biological insights. Data analyses are often complemented by the use of specialized databases containing biological information about particular proteins, metabolites, experimental conditions, or organisms. Bioinformatics encompasses the open-source computational software used to apply machine

learning procedures capable of recognizing and classifying experimentally determined interactions and effects.

Statistical analyses often rely on the R statistical environment, a programming language and multipurpose package designed for the cleaning, manipulation, analysis, and visualization of multifactorial biological data. Recent years have seen an increased use of R for analyses in different scientific fields and the incorporation of new statistical methods and apps with graphical interfaces that enable the application of complex machine learning analyses by users without programming experience. The use of R data-cleaning packages also permits the joint analysis of heterogeneous transcriptomic data from different laboratories and provides suitable ways to visualize the variability of complex multidimensional data and the results of principal component analyses. [189, 190, 191, 192]

Chapter - 11

Systems Biochemistry and Network Biology

Metabolic and signaling networks form the basis of systems biochemistry. Pathways are interlinked and fully connecting the interacting components reveals the underlying biological mechanisms. Recent studies have underscored the significance of protein–protein interactions for the biosphere. Together with protein–ligand interactions and affinity measurements, the establishment of interaction maps provides another key area of network biology.

Living systems are complex entities that cannot be understood by examining and dissecting independent subsystems. System-level analysis reveals how networks of biological pathways enable cellular functions through the integrated and coordinated action of their components. Metabolic and signaling networks consist of interacting enzymes and functional components, which integrate genetic and biochemical data, allowing the examination of many processes as interconnected systems. A distinct dimension of network biology was added with the advent of protein–protein interaction maps, which detail the assembly of the interactome and together with the growing database of small molecule interactions highlight how bioactive compounds regulate life at the molecular and cellular levels. These network maps have also formed the basis of deep and broad affinity matrices that provide novel perspectives on metabolic regulation and stress responses across multiple organisms.

Elementary flux mode (EFM) analysis identifies all the possible routes through a metabolic network that can sustain growth under specified conditions with a non-negative flux. The notion of a set of metabolites with minimal metabolic pathways has been extended; applying a similar concept to control analysis highlights properties such as that flux balance analysis predicts no change in metabolic flux

upon partial inhibition or removal of branches from the pathway. Hierarchical control leverages control decomposition to identify primary response elements and their interactions. [193, 194, 195]

Metabolic and signaling networks

Interactions between biological components are often thought of in terms of metabolic and signaling pathways-linear sequences of changes that underpin cellular operations. A more complete portrait considers networks of interconnected metabolic, signaling, and protein-protein interaction pathways, along with the information flows that govern cellular decisions and responses. Metabolites do not simply move through a sequence of enzymes; they are continually produced and consumed in multiple fashions by all the pathways that connect to them, with fluxes that can change dramatically depending on conditions.

Metabolic engineering aims to redirect cellular flux through particular pathways by altering the capacities of enzymes to be active at the same time. Pathways can be integrated across different organisms for applications like biosynthesis in heterologous hosts and microbiome engineering. Network biology encompasses the emergent behaviour of coupled systems, modelling them as a ‘signal transduction network’ that maps the interactions among all characterized signal receptors, their ligands, and their downstream effectors, allowing global analysis of signalling pathways that reflect the simultaneous reception of different signals. Such integrative approaches are informing biosafety assessments of environmental releases of genetically engineered microorganisms designed for beneficial purposes. [196, 197, 198, 199, 200]

Protein-protein interaction systems

Integrate PPI networks into metabolic and signaling interactions; affinity networks reveal dynamic interactions among cellular proteins. Effectors usually associate with pre-formed complexes or modify other proteins synergistically.

Proteins often function together, forming multimeric complexes or cooperating in molecular pathways. These physical and functional

associations are modeled in protein–protein interaction (PPI) networks. Systems-based approaches extend PPI mapping to include interactions with other molecules or processes; they drive cellular dynamics and determine biological contexts.

PPI networks map the associations of individual proteins. Affinity capture experiments identify which proteins bind to one of many bait proteins under specific conditions. Tighter affinity–purification protocols identify proteins that co-purify in high concentrations with the bait and should form a complex in the corresponding cellular context. Most PPIs identified in this manner are likely to be physiologically relevant, although some may be indirect. Some effectors may have a role in regulating a protein complex and act by modifying the activity of its constituent proteins rather than binding the complex directly. Such regulatory proteins frequently bind weakly and transiently and require caution when interpreting their assignments in multi-assay affinity networks. [201, 202, 203, 204]

Systems-level regulation

In systems biochemistry, biological reactions comprise metabolic networks that dynamically integrate communication and signaling among pathways. Such communication employs information and regulatory networks that modulate the activity of biosynthetic and enzymatic processes. Captures both concepts, as it describes how perturbations in one part of a system propagate throughout the entire system. Because the synthesis of metabolites depends on complex interaction–flux relationships, it is critical to assess how biological systems account for stressors and alters in environmental conditions and growth.

Considerable effort has focused on determining how signaling molecules act at all levels, from the gene to the organism. Immersive investigations have revealed that crosstalk exists between these signaling pathways-where certain signaling pathways can influence others-and has led to the proposition that one or a few essential components can direct the overall systemic response toward a given stimulus. Signals arising from one part of the network often modulate the overall transcriptional response of the network as a whole,

producing gradients that differ from those expected from separate responses to individual inputs without further integration [205, 206, 207, 208, 209, 205, 206, 207, 208, 209].

Computational modeling of living systems

Computational models have become indispensable tools in biochemistry and molecular biology. Like empirical studies, they aim to illuminate the structure and behavior of complex biochemical systems; however, they do so by simulating molecules and their interactions under well-defined conditions. The following paragraphs describe methods commonly applied in the modeling of living systems, discuss how these models are connected to experimental work and fundamental principles, and explain how results are used to generate further insights.

Theoretical predictions rely on accurate atomistic descriptions of the chemical interactions present in a target system. Such descriptions can be derived from either first-principles calculations or empirically derived force-field potentials-and a given model can use either or both approaches. For small molecules and relatively simple environments, ab initio calculations of either electronic energies or molecular dynamics simulations based on ab initio forces may yield reliable results. But for larger systems, especially those that exist in biologically relevant conditions, the prohibitive computational costs associated with these methods necessitate alternative approaches that use parameterized potentials. Molecular mechanics and certain types of mesoscopic models belong to this category of theoretical approaches. These approximations simplify the explicit description of chemical interactions, thereby accelerating the simulation time scales by orders of magnitude. Conclusively, although accelerating simulations on the necessary time scale is the biggest challenge in the field of computational modeling, methods for analyzing experimental data, combined with increasingly powerful computational resources, now provide unprecedented opportunities for understanding the behavior of molecule networks for which underlying mechanisms remain unclear.

Chapter - 12

Biochemistry of Microorganisms

Microbial metabolism, diversity, and adaptation are central to ecology, biotechnology, and human health. Comparing metabolic pathways across taxonomic groups reveals that the same compounds can be generated by different routes. Microorganisms adapt to extreme conditions, such as very low/high pH, high temperature or salinity, high hydrostatic pressure, and total nutrient scarcity. They also interact with higher organisms, as in symbiotic and pathogenic relationships, and with the environment by producing biogeochemical cycles. Biochemistry underpins their roles in fermentation and bioremediation, as well as their relevance as reservoirs of human pathogens.

Microorganisms are metabolically highly diverse agents of change in natural and polluted environments, and the metabolic capabilities of organisms in a biotope can be assessed since the same or similar reactions are carried out by members of specific phylogenetic groups. The metabolic versatility of microorganisms enables them to adapt to extreme environments, such as those with extreme acid or alkaline pH, high temperature or salinity, high hydrostatic pressure, and a complete lack of or high concentration of nutrients. Adaptation mechanisms may involve the synthesis of heat-shock proteins, enzymes with extra stability, membranes capable of withstanding high temperature and acidity, as well as systems protecting against oxidative damage. Microbial enzymes have important industrial applications, and interest in those from thermophiles and psychrophiles has surged in recent years.

Microorganisms also interact with higher organisms, establishing symbiotic or pathogenic relationships with insects, plants, fishes, amphibians, and mammals. Furthermore, they modify their immediate environment through the release of metabolites, including

biomolecules with biotechnological applications, such as biosurfactants, pigments, and antimicrobial compounds. Specific groups often prevail in contaminated environments providing a particular class of compound-e.g., oil-utilizing bacteria in petroleum-contaminated waters-proving useful for bioremediation. Their great social and economic importance is also acknowledged through milk fermentation and alcoholic beverage production, represented by the *Saccharomyces cerevisiae*-fermented beverages. [210, 211, 212, 213]

Microbial metabolism and diversity

Microbial metabolism is a topic of increased interest as industry and medicine rely on microorganisms for products and processes. Microbial diversity is extraordinary because of the varying environment conditions on Earth, resulting in distinct taxons and metabolic capabilities. Pathways for energy generation can be found in each of these taxons, even for the most extreme environments, whether acidic, alkaline, thermal, or hyperosmotic. Although less widespread and efficient than oxygen, other terminal electron acceptors serve different taxa and configurations of fermentative pathways using molecular hydrogen generated by other microorganisms when no external electron acceptor is available. Adaptations within the enzymes or pathways allow microorganisms to tolerate extreme conditions. Despite structural and physiological adaptations, the basic metabolic pathways remain conserved, with variations at the enzymatic level. Metabolic comparison reflects the relationship among taxons and uncovers the biochemical adaptation of extremophiles to the environmental conditions.

In addition to being considered the oldest living forms on Earth, microorganisms are the most important actors in a number of physiological, environmental, and biotechnological processes. Microbial community diversity in a specific environment arises from conditions affecting the community composition, including the main substrates available for consumption, the predominant metabolic transformations, and the main products of the metabolic reactions. Microbiomes possess multiple functions, including biogeochemical cycles, biomass production, and protection against invading pathogens,

and can be used to search for the main causes of environmental changes. Microinfestation has grown in importance over the years as a consequence of the increase in factors involving host–microbe cooperation. Recent studies of black spots found on bacterial-flesh sweet fruits are being used for the development of low-cost management practices. [214, 215, 216, 217]

Biochemical adaptation to extreme environments

Extremophiles exhibit a remarkable metabolic diversity that supports survival and growth in conditions considered hostile for most organisms. Microbes are capable of growing at extreme pH, temperature, salinity, and pressure and with diverse electron donors and acceptors in a variety of eco-physiological settings, including the deep oceans, deep subsurface of the Earth, high-altitude area, and inside glacier ice.

Halotolerant, salt-sensitive, and halophilic extremophiles thrive in brine and saturated brine by employing mechanisms like ion homeostasis, production of compatible solutes, and changes in packing and physiochemical properties of membrane lipids. Adaptation strategies of psychrophiles involve expression of cold-adapted enzymes and ribosomes, maintenance of membrane fluidity at low temperatures, and prevention of freezing. Biochemical adjustments that allow something to grow at high temperatures and pressure in deep-sea hydrothermal vents include overall protein stability, DNA stability, stabilization of the ribosomal structure, and preponderance of α -helix at the expense of β -sheets. Metabolisms of acidophilic and alkaliphilic organisms are normally preserved by acid- and alkaline-resistant enzymes. Cheophilic viruses and bacteria collect chemical energy from the oxidation of reduced metals (Fe II, Mn II, As III, etc) urine-condition.

Extremophiles have emerged as ideal sources of enzymes for synthetic and biotechnology applications because of their stability at extreme conditions for routine laboratory use. Their metabolic diversity is exploited in fermentation for the production of ethanol, biogas, single-cell protein, and bioelectricity. The extensive metabolic versatility of these organisms offers considerable potential for

biotechnological applications such as bioremediation, production of green fuels, pollution treatment, and bioexploration.^[218, 219, 220, 221]

Microbial interactions with hosts

Microorganisms inhabit virtually every ecological niche and participate in a variety of interactions with surrounding biotic and abiotic components, including animals and humans. These interactions can be neutral, associative, or mutualistic, but they can also be parasitic or pathogenic, in which case they can cause a disease. Symbiotic associations require highly specialized interactions with specific hosts and usually involve specialized structures in the symbiont or the host. Microorganisms play important roles in these relationships, taking part, for example, in the biogeochemical cycle of nutrients, forming lichens in association with plants, aiding ruminants in wood digestion, and inducing diseases in plants and animals. Understanding host–microbe interactions and their molecular bases are key issues on the frontier of microbiology.

Microbiota are composed of a wide variety of microorganisms associated with animals, plants, and humans. Their identity varies according to the host, the ecological niche, its age, and other factors. Under physiological conditions, there is a dynamic equilibrium between the microorganisms and their host. However, when the host undergoes stress or an ecological imbalance, the composition of the microbiota can change, leading to dysbiosis. The biochemical patterns of the microbiota of different individuals and populations reflect the diversity of the different environmental factors that influence these organisms. Mucosa-associated viruses of humans received special attention in the identification of the virome and its role in human health [222, 223, 224, 225].

Industrial and environmental microbiology

Microorganisms play crucial roles in shaping ecosystems by contributing to biogeochemical cycling, enhancing nutrient availability, and influencing other organisms. Microbial biotechnology exploits this potential, utilizing nature's enzymes for eco-friendly industrial processes and harnessing microbes for production and bioremediation.

Microbial metabolism and diversity: Microbial metabolism is extraordinarily diverse. Carbohydrates, fatty acids, proteins, and RNA serve as carbon and energy sources in diverse ecosystems. Sugars are the primary energy source in oxygen-rich environments like the human gut. Relatively few microorganisms can utilize aromatic compounds, which are abundant in anoxic environments, but they can be exploited for biotechnological applications. Alternative substrates are rarer, limiting the number of bacteria capable of utilizing sulfide, ammonium, methane, or hydrogen. Utilization of nutrients that are abundant but difficult to access requires symbiotic relationships. Bacteria capable of degrading cellulose occupy the guts of large herbivorous animals, such as ruminants and termites, allowing them to grow on cellulose-rich material.

Biochemical adaptation to extreme environments: Microorganisms occupy extreme environments, including the harsh conditions of acid-alkaline, temperature, pressure, and salinity. Some organisms are unadapted to the extreme environment, while others require it for growth. The biochemical adaptations that allow these organisms to thrive include acid-base homeostasis, production of compatible solutes, and structural stability of proteins, membranes, and ribosomes. These adaptations can be described in general and specific terms. Acidic or basic conditions inhibit enzymatic activity and induce denaturation or aggregation. Acidotolerant and acidophilic organisms maintain a nearly neutral internal pH by synthesizing and accumulating acids and bases.

Microbial interactions with hosts: Microorganisms and plants interact with each other and with animals in three different ways, termed pathogenesis, symbiosis, and commensalism. In pathogenesis, the interaction is detrimental to the host. Infection usually requires active entry, but some pathogens can cause disease by producing toxins. Other microorganisms induce disease by producing toxins that inhibit host growth and reproduction. Pathogenesis may aid the infected population by enabling nutrient acquisition in depleted environments. In symbiosis, both organisms benefit from the relationship. Symbiosis may result in mutualism, in which both populations benefit from the interaction, or exchange of nutrients,

defense compounds, or structural support for protection or dispersal. In commensalism, the relationship is beneficial or neutral for one, and neutral for the other. Fungi that occupy the tissues of mushrooms reside on woody substrates. They are harmful to the plant.

Industrial and environmental applications are primarily based on the fermentation capacity of microorganisms and their metabolic activity in anoxic environments or for biodegradation. Fermented foods include bread, yogurt, alcohol, and soy sauce. Alcohol is commercially produced with high purity by distillation from fermented molasses. The enzymes secreted by fungi during fermentation are exploited for the enzymatic hydrolysis of food materials. Complex biocatalysts, including mixtures of enzymes, are used in detergents. ^[226, 227, 228, 229]

Chapter - 13

Biochemistry of Plants and Ecosystems

Plants are unique organisms capable of converting light energy into usable chemical energy and synthesizing organic compounds from inorganic starting materials. Photosynthesis is carried out in the chloroplasts located inside leaves, and the carbon-fixing reactions are often referred to as the Calvin cycle. The end product, glyceraldehyde-3-phosphate (G3P), can be converted into glucose and subsequently into starch or sucrose for long-term energy storage, or it can be geared toward other biosynthetic processes.

Only certain habitats have an abundance of vascular plants, yet they constitute the majority of the Earth's biomass and perform the most essential contribution to the biosphere. Plants interact with microorganisms in complex ways. The association of plants with pathogenic microbes leads to disease, whereas the association with mycorrhizal fungi aids in the uptake of limited inorganic nitrogen and phosphorus from the soil, facilitating plant growth. In addition to the declared association with other organisms, plants themselves are used as substrates for the growth of microorganisms through the process of fermentation. Finally, the metabolic processes of plants are involved in creating an environment that supports higher organisms: the process of photosynthesis not only releases oxygen to the atmosphere, but it also plays a crucial role in fixing carbon and thus in controlling the concentration of greenhouse gases. ^[230, 231, 232, 233]

Photosynthesis and carbon fixation

Photosynthesis is the primary mode of carbon fixation in which light energy is converted into chemical energy and stored in the form of carbohydrates. In green plants, algae, and cyanobacteria, carbon dioxide (CO_2) gas is reduced to carbohydrates, generating oxygen gas

(O₂) as a by-product. The light-dependent reactions absorb light energy for the synthesis of ATP and NADPH, enabling the light-independent reactions (Calvin cycle) to reduce CO₂. In plants, photosynthesis occurs in the chloroplasts of leaf cells, where specialized structures (thylakoids) contain chlorophyll pigments to absorb light and convert it into chemical energy. In addition to ATP and NADPH synthesis, the light reactions also generate O₂ from the photolytic cleavage of water and produce the cyclic electron transfer pathway that generates reduced electron carriers (NADPH, Fd).

During the dark reactions (Calvin cycle), ATP and NADPH produced in the light allow the conversion of CO₂ into carbohydrates without the direct dependence on light. The enzyme RuBisCO catalyzes the fixation of CO₂ into ribulose-1,5-bisphosphate (RuBP), generating 3-phosphoglycerate, which is reduced to glyceraldehyde-3-phosphate (G3P) in two stages. One molecule of G3P is used for biosynthesis, while the remaining is used for RuBP regeneration, facilitated by phosphatase and transketolase. Alternative autotrophic pathways also exist for carbon fixation other than the Calvin cycle, such as reductive acetyl-coenzyme or propionate pathway in strictly anaerobic bacteria and methanol oxidation by methylotrophs. [234, 235, 236, 237]

Plant metabolic pathways

The central metabolic pathways of plants are broadly similar to those of other organisms, with the Calvin cycle and its derivatives dedicated to carbon-related biosynthesis. This system is linked to multiple alternative anabolic processes associated with the synthesis of nitrogenous compounds and some cofactors derived from the pentose phosphate pathway. Additionally, the ubiquinone-precursor pathway and several shikimic acid-pathway derivatives are shared with higher eukaryotes. The same pathways, along with additional ones devoted to branched-chain amino acid biosynthesis, terpenes, isoprenes, and secondary products such as flavonoids, represent the unique features of plants. However, it is important to remember that their organization as sites of specialized biosynthesis is also functional, providing

communication synergies in relation to mutual nutrients and cofactors that justifies grouping them.

Although mitochondria in higher plants share similarities with those of animals and fungi, several peculiar features appear at the ultrastructural level and are sustained by specific differences in respiration. The other organelles share a number of endomembrane features with those of higher animals: a nuclear envelope, a complex system of microtubules and microfilaments, and an internal secretory glycoprotein-loading system. These communions, together with the added redox functionalities of chloroplasts and the semiautonomous character of mitochondria, are due to the common origin of primary endosymbiosis and cannot be neglected when elucidating metabolic network integration and adjustment in the plant kingdom. [238, 239, 240, 241]

Biochemical responses to environmental stress

Plants perceive many environmental stresses (including cold, heat, drought, salinity, pathogen infection, and nutrient deficiency) as signals that activate their defense systems and help them to adapt. Specialized metabolic pathways generate signaling molecules (such as salicylic acid, jasmonic acid, and ethylene) and various defence compounds (including phytoalexins, phenolics, and flavonoids), which enhance fitness by preventing structural damage and by reducing the extent of viral and bacterial infections. Such pathways are induced not only in trees and crop plants but also - and especially - in the sensitive roots, nodules, and leaves of plants in symbiosis with arbuscular mycorrhizal fungi.

The biochemical responses of plants to these stresses are analogous to human defence mechanisms such as fever, inflammation, and the production of antibodies. Consequently, many of the chemicals employed in plant defence and stress-resistance systems function as therapeutic agents, fertilizers, or signalling cues along the complex communications networks present in human physiology.

Although biochemistry is often defined as the chemistry of the living cell or organism, the level of biological organization that actually benefits from a better understanding of biochemical pathways and

processes embraces life on Earth as a whole and its biospheric cycles.
[242, 243, 244, 245]

Plant–microbe interactions

Root-associated microbial communities critically shape plant growth, health, and productivity, resulting in practical applications in agriculture, ecology, and biotechnology. Comprehensive analyses of rhizobacterial genomes discovered metabolic and regulatory networks shared by bacteria from diverse taxa. These interactions enable soil-borne bacteria to mitigate the effects of water deprivation on nodulated legumes. Rhizobacterial communities are key actors in biogeochemical processes in the rhizosphere and can modulate disease resistance in plants.

A comprehensive understanding of these interactions contributes to the definition of new paradigms in microbial ecology, including the importance of plant and soil conditioning, the genomic bases of mutualistic interactions, the role of spatial structure and nutrient flow in supporting species diversity, predictive schemes for assessing microbiome functions, and the engineering of soil microbiomes to confer disease resistance to plants. The roles of arbuscular mycorrhizal fungi and root-associated bacteria in plant–microbe interactions are discussed, as well as their use for stress alleviation in plants.

Molecular biochemistry is deeply involved in recombinant microorganisms for enhanced degradation capacity or specific metabolic activities, including those responsible for tolerance of toxic compounds in the environment. Environmental biochemistry, as a cross-field discipline, covers the effects of inorganic ions on the biochemical composition of tissues and perfluorinated and perhalogenated compounds.

Chapter - 14

Environmental Biochemistry and Pollution

Biochemical cycles of elements trace the movement of essential chemical elements through biotic and abiotic compartments in ecosystems. Elements, such as nitrogen and phosphorus, are cycled through various oxidation states by diverse prokaryotic and eukaryotic life forms. The cycling of elements is driven by the intrinsic properties and interactions of the involved elements. Biochemical cycles of carbon and sulfur involve relatively simple mineralization/fixation processes, but geared to build large complex organic molecules in plants and fungi (carbon) or to form organosulfur compounds capable of utilizing light as an energy source (sulfur). The biological utilization schemes and capacities are often more complex and more diverse, and include mineralization, fixation by photosynthetic, chemosynthetic, and even an integral fermentation-SOx mechanism for the uptake of sulfate in some limno-genous environments. Biochemical cycles also operate for some heavy metals in biological systems, but on a much smaller scale. Their movement and profile globally is often described as a “cycle” for chemical convenience, but, unlike carbon and sulfur, more correctly represent a deep complex bioaccumulation process.

Xenobiotics are chemical compounds originated from human activity that have no relevant biological function. Simple naturally occurring compounds are usually biodegradable at suitable environmental concentrations, but when the concentration exceeds the threshold level they can affect the survival and reproduction of organisms (toxicity), and, at higher concentrations, cause biological assassination. The biochemistry of detoxification represents not only the biotransformation of organic pollutants but also that of inorganic compounds such as arsenic, lead, and mercury. Organic pollutants can

undergo two kinds of detoxification process. The first involves biotransformation at equilibrium, with the transformation response in one direction not exceeding that in the opposite direction, so the biotransformation pathway is reversible and does not change the property of the organic pollutant. The second involves the metabolic pathway that occurs along the redox sequence and is irreversible.

Biodegradation is the biochemical transformation of a chemical compound to simpler products, leading, at least in principle, to mineralization. Bioremediation is the use of biota for the removal or recovery of contaminants (in excess of normal environmental concentration) from the environment. Biodegradation has a wealth of applications and research in various industrial-related areas, involving very diverse chemical substrates and different taxonomic groups. The fate of biodegradation pathways and operation is similar to the source of carbon and nitrogen in this context. To minimize and exploit the damage caused by these external introductions, biodegradation of various chemical compounds subtly occurs in contaminated environments, hence supporting bioremediation processes. The monitoring of incubation time and treatment operation are the determinant factors in biodegradation studies. On the basis of the molecular evolution concept, the biodegradation and bioremediation systems represent adaptive evolution responses of the microbes sustaining the integrated ecosystem function. [246, 247, 248]

Biochemical cycles of elements

Biochemical cycles underpin the flow of energy and chemical elements through living systems, linking diverse organisms and transforming atmospheric chemical forms into biomolecules. Biochemistry thus acts as a nexus between the biosphere and everywhere beyond it, particularly the lithosphere, hydrosphere, and atmosphere. Microorganisms are central to the cycling of elements.

Biochemical interactions guide flow of all key chemical elements through the biosphere—carbon, nitrogen, sulfur, phosphorus, and others. Within ecosystems, transfer of energy among organisms is typically accompanied by transfer of atoms—whether within an organic molecule or among several different molecules. The biosphere, however, is

largely a chemical island, since the only significant sources of fresh material are from external abiotic environments-biomass is degraded into increasingly simple chemical forms from which nutrients can be taken up only by microorganisms capable of using those abiotic materials. The three main classes of reactions are: (1) Similar to assimilatory processes, but operating in reverse. (2) Events in which atoms from completely oxidized or reduced substrates are transferred from one type of molecule to another. (3) Reactions that remove or provide oxygen from organic molecules or those completely reduced or oxidized substrates. [243, 249, 242, 250]

Xenobiotics and biochemical toxicity

Metabolism provides the means for organisms to extract nontoxic resources from the environment and to maintain homeostasis. Artificial and natural toxins in nature have created selection pressure for development of specialized degradation pathways. Microorganisms in specific ecosystems have demonstrated remarkable levels of resistance to such toxic compounds. These biochemical degradation pathways and resistance mechanisms are termed biodegradation. The relationship between the projected compounds toxic to mammals and their catabolic capacity is not coincidental. Verification of the capacity assumed to be present in higher animals, conjunction with the structures of the substrates and the products of the microbial metabolisms, provide the scheme of the biotransformation reaction type. Biotransformation may thus be understood as the ability of microorganisms to alter the structure of an organic compound and to produce either a more polar more hydrophilic product, or a more toxic product, or a combination of both.

Identification of biochemically active compounds is now possible by focusing on predicted accidents resulting from improper use of pesticides, herbicides, fungicides, rodenticides, growth promoters, azo dyes and other hazardous chemicals for which no specific analysis exists, nor standards for poisonous effects been established. Evaluation must recognize an optimal pH and adequate ionic concentration in the aqueous mixture. Computer-assisted toxicological, epidemiological and pathological studies and mineralization estimation using

radioactive tracers should be emphasized. Potential suspicion and concern relating to any suspected xenobiotic must remain operational, but it should not be generalized or be conducted indiscriminately. Research work as an expression of socio-economic development is now in widespread operation. Socio-economic progress requires a sound starting point and a steady course toward the long-term destination. [251, 252, 253, 254]

Biodegradation and bioremediation

Biodegradation describes the breakdown of organic compounds into simpler components (most often mineralization), typically by the metabolic activity of bacteria or fungi. Bioremediation refers specifically to the use of microbial metabolism to remove pollutants (mainly xenobiotics) from contaminated environments. Microbial bioengineering enables the design of microbial strains with improved activity or expanded substrate range. Bioremediation processes and systems have been developed for aquifers, surface water, and soils, as well as the subsurface of several industrial estates that have been saturated with organic solvents.

Microbial biodegradation of organic compounds generally involves the sequential hydrolysis of macromolecular precursors (several solvent-stable and easily biodegradable polymeric materials are available for food and other packaging applications) to soluble monomers, followed by substrate assimilation and conversion to biomass or mineralization. The natural capacity for biodegradation of organic pollutants in the environment can be overwhelmed by large concentrations or slow degradation rates. Such processes can be accelerated, or de-novo developed, by engineering appropriate microbial consortia, enabling the establishment of specific bioprocessing and bioremediation systems.

Pollution of land, air, and water systems by xenobiotic chemicals poses a considerable risk for public health and important sectors of the economy. Biochemical research links key bioprocesses to industrial and medical applications, notably involving medicine development, vaccine construction, and pollutant degradation. Degradation routes identified for diverse xenobiotic pollutants are analyzed with respect to

offers for improving their natural biodegradation and applications in bioremediation, predictive removal during waste treatment, detoxification, and waste treatment and transformation for chemical recovery. [255, 256, 257]

Biomarkers of environmental stress

Biomarkers are measurable indicators reflecting the exposure and effects of environmental stress. Changes in biochemical variables (e.g., enzyme activities, metabolite concentrations) can indicate cellular, biochemical, or physiological alterations in the exposed organisms and serve as predictors for population- or community-level responses. In animals, the most widely studied biomarkers are changes in various antioxidant capacities associated with oxidative stress and DNA integrity. In bacteria, altered enzyme activity patterns have been linked to specific xenobiotic degradation patterns, while changes in multiple enzyme activities have been exploited for estimating toxic exposure degrees. Plants are particularly sensitive to environmental alterations and respond by generating a plethora of defensive compounds. Such compounds, which accumulate in response to various biotic and abiotic stresses, are promising biomarkers of environmental alterations in plants.

In general, any biochemical, physiological, or metabolic change in response to environmental stress represents a potential biomarker. While the specific physiological function of the alteration may be unknown, carefully designed field experiments can establish the connection. The identification and practical use of such markers should be driven by an interdisciplinary approach linking ecologists with biochemists and physiologists. In this context, both environmental stress indicators (e.g., temperature) and possible stress-response indicators (e.g., metabolite concentrations or DNA integrity) should be considered determinants when selecting suitable compounds. Such an integrated perspective provides a guide for selecting cost-effective biomarkers and determining the degree of environmental alteration in biotic communities. [258, 259, 260, 261]

Chapter - 15

Biochemistry in Human Health and Disease

Numerous diseases and disorders have a molecular basis rooted in metabolic pathways. Reactions may be disrupted by enzyme deficiency, misfolding or inhibition, failure of coenzymes, alteration of metal cofactors, or transcriptional activation. Genetic disorders arise from DNA-base mutations, causing metabolic imbalance by inactivation or overproduction. Exogenous agents, such as oxidative stress or inflammation, can inflict damage that disrupts homeostasis and alters biochemical pathways. Markers of disease states are monitored in clinical practice, and therapeutic strategies address both infection and metabolic symptomatic pathways.

Enzyme deficiencies linked to diseases are Mendelian genetic disorders. Patient genotypes can be traced to defective enzyme forms such as non-functional mutations, temperature-sensitive misfolds, or those bound by toxic metabolites, which impede the activity of non-defective homologs. Disorders often produce characteristic patterns of metabolites whose concentrations can be monitored for diagnosis. Genetic damage may also arise from defective building-block metabolism, such as in autosomal-recessive Lesch-Nyhan syndrome. Abnormal accumulation of substrate or aberrant intermediates generates “bad chemistry” that leads, in some cases, to symptoms visible long after the damage had occurred. Many diseases may also have compound heterozygotes, which have slightly different mutations at the same locus on homologous chromosomes. [262, 263, 264, 265]

Molecular basis of diseases

Pathogenic mechanisms and metabolic perturbations can be understood at the molecular level through various approaches in biochemistry and some specialized fields. Metabolic malfunctions play direct roles in many human diseases, including classic inborn

metabolic disorders, cancer, fetal alcohol spectrum disorders, and diabetes. Biochemical disturbances can also indirectly promote diseases by triggering inflammatory responses, producing reactive oxygen species, or directly causing tissue damage. The detection of specific metabolic perturbations is a basis of diagnostic procedures in medicine, while many pharmaceutical products aim to counteract biochemical changes during disease progression.

Metabolic and genetic disorders generally stem from mutations in DNA that cause alterations in protein sequences, misfolded proteins, reduced or absent activities of enzymes, or uncontrolled functions of regulatory proteins. Mutations may arise spontaneously or as a result of X-ray exposure, ultraviolet irradiation, or treatment with certain chemicals (e.g., ethidium bromide). Some invariant genes crucial for cellular functions tend to be highly conserved among different species (e.g., *E. coli* and human), making prokaryotes convenient biosensors for detecting human disease. Others have been introduced into farm animals to increase growth, and still others have been knocked out in mice, pigs, and even primates for use as disease models. In addition, the rapid advance of high-throughput sequencing technologies has created genetic data for more than 6300 species, enabling the establishment of powerful new research tools such as comparative genomics. These approaches have revealed key genes and metabolic factors responsible for diseases, mutations, and aversion with respect to environmental conditions. [266, 267, 268]

Metabolic and genetic disorders

Disruption of metabolic pathways is often termed inborn error of metabolism. Such disorders are genetic and encompass all aspects of metabolism. An accumulation of an intermediate product may have consequences such as (1) accumulating excess amounts of a toxic compound (e.g. phenylketonuria); (2) affecting normal function of an organ or tissue (e.g. alkaptonuria) and (3) the formation of a non-functional product that leads to a deficiency in the respective metabolic pathway; amino acids degradation disorders; lysosomal storage diseases (e.g. Gaucher disease); organic acids disorders (e.g. propionic aciduria); fatty acids disorder (e.g. very long-chain acyl-CoA

dehydrogenase deficiency; sugar catabolism disorders such as galactosaemia and lactose intolerance; glycogen storage diseases (type I glycogen storage disease) followed often by secondary symptoms.

Metabolic disorders also include genetic defects affecting enzymatic activity, as well as those that simply lead to reduced amounts of starting compounds, such as substrates or cofactors or lead finally to enzyme activity deficiencies. Advances in biochemistry and molecular biology result in increasingly rapid and reliable genetic diagnoses that may be performed either on blood samples from patients after the onset of clinical symptoms or functionally when considering affected gene function in a model organism. [269, 270, 271]

Oxidative stress and inflammation

Reactive oxygen species (ROS) are constantly produced as byproducts of aerobic metabolism. Under normal conditions, the production and removal of these species is in balance, and they participate in cellular signaling, redox regulation, and host defense. ROS levels can increase in response to several different stimuli (e.g., infection, inflammation, ischemia, UV exposure, ionizing radiation), leading to oxidative stress, which may be defined as a disturbance in the redox balance in favor of oxidants. Oxidative stress is characterized by an increase over the normal range of ROS/hydrogen peroxide or a decrease in antioxidant defense capacity. Although oxidative stress can serve as a common trigger for the activation of cell-signaling pathways, it can also damage macromolecules (lipids, proteins, and DNA) and may contribute to aging and the development of several diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, fibrosis, and autoimmune diseases.

Inflammation is an adaptive response to injury and infection. It is usually protective, aimed at removing the initiating cause (e.g., pathogen or stimulus), clearing damaged tissue, and initiating healing. However, dysregulated inflammation may lead to disease. Inflammation is characterized by the accumulation of immune cells at the site of inflammation, exposure to proinflammatory mediators released by the cells, and changes in the metabolism of the tissues. Cellular oxidative stress accompanies acute and chronic inflammation:

infected or injured tissues often present increased levels of ROS produced by infiltrating immune cells. Oxidative stress can also result from exposure to exogenous noxious stimuli, such as UV irradiation and pollution. It is known that activation of redox-sensitive cell-signaling networks contributes to the initiation and amplification of the inflammatory response [272, 273, 274, 275].

Biochemical diagnostics and therapeutics

Biochemical diseases are often diagnosed by quantifying their biomarkers or by detecting other abnormalities of known pathology. The reliability of the detection process is directly correlated with the associated analytical method. Consequently, the analysis is either based on laboratory tests (e.g., determining the concentration of blood glucose or the presence of antibodies in the body fluids) or on imaging procedures (e.g., MRI, ultrasound, CT scan). Other conditions besides diseases can also significantly affect biochemical diagnostics and relevance. For example, factors associated with aging can lead to increased blood glucose levels and damage caused by oxidative stress can lead to the production of by-products. When found in excessive amounts, both changes are treated with drugs. Blood glucose levels can be controlled by thin injections of insulin, whereas products that are part of normal thermodynamic equilibrium can be reduced by the action of antioxidant dietary supplements by reducing the production of by-products. In such cases, the emphasis of biochemical research is to establish the normal ranges and factors interfering with the concentrations or activities of selected biomarkers.

Therapeutic strategies use drugs to treat biochemical diseases. Drug development is a natural continuation of biochemical research. With the elucidation of the cause of the disease and its biochemical pathways, specific inhibitors/binding compounds can be designed and tested. The prerequisite for successful development is that the molecular cause is known and the potentially affected enzymatic or organic pathways have been studied and identified.

The above-mentioned diagnostic and therapeutic processes represent a fraction of the potential applications of biochemistry in medicine. Much broader and deeper impact of biochemistry can be

found in studies about the prevention of diseases and health disorders [276, 277, 278].

Chapter - 16

Biotechnology and Biochemical Engineering

Biochemical research contributes to technology transfer and product development, ensuring alignment with business and environmental needs. Close collaboration with industry is essential, especially with small and medium-sized enterprises and within appropriate interdisciplinary settings implementing knowledge-based bioeconomy principles. Products and processes using biological resources or based on living systems provide numerous options for improving quality of life while reducing pressures on the environment.

Development of engineered biological systems capable of producing valuable products from renewable resources demands expertise in metabolic and enzyme engineering, synthetic biology, biosafety, fermentation processes, product recovery, and industrial applications. A pathway constructed by synthetic biology can be viewed as an engineered reaction set that, together with a specific enzyme supply-provided by enzyme engineering-generate a desired product. The application of biotechnological principles and techniques, together with other areas of chemistry, biology, and related sciences, can play a pivotal role in the creation of better environmental conditions and the implementation of nation-specific sustainable development plans [279, 280, 281, 282].

Genetic engineering and synthetic biology

Development of genetic engineering and synthetic biology technologies has enabled construction of novel genes, pathways, or whole genomes, with insertions often accompanied by genome alterations, such as changes in regulatory elements or metabolic pathway modifications. The ability to design custom gene sequences, together with their introduction into various host organisms, is a

powerful tool in biochemistry, microbiology, and biotechnology. It presents the opportunity to produce non-native biosynthetic pathways that produce interesting new products within living organisms that are otherwise incapable of synthetic production. By harnessing microbial hosts, it is the promise of synthetic biology to provide a platform for creating bacteria that manufacture specialty chemicals, such as pharmaceuticals, cosmetics, and fragrances, at low cost and high purity.

The ability to deliver custom-designed gene circuits into hosts provides yet more opportunities to influence and expand metabolic flux and alter cellular behavior. Along similar lines, it is also possible to engineer entire responsive pathways. However, such approaches usually result in overexpression of the gene of interest and can therefore benefit from additional strategies designed to optimize native pathways rather than overwhelm them. In these scenarios, the addition of enzymes that speed the focus pathway or depletion of genes coding for competing reactions can be advantageous. Synthetic biology is not limited to pathway insertion and adjustment; it also embraces removal of entire genomes and their replacement with a synthetic alternative.

[283, 284, 285]

Enzyme and metabolic engineering

Overexpression, optimization, and balancing reactions of engineered metabolic networks fall within enzyme engineering. Metabolic engineering also aims at producing a designed natural product by functional expression of a heterologous biosynthetic pathway in an appropriate heterologous host. Practices include optimizing the substrate specificity of an existing enzyme for a non-naturally occurring substrate as to efficiently scavenge it for further transformation in the engineered metabolic network. Cross-linking two enzymes of which the activities would be incompatible in their natural environment of function into a bifunctional enzyme. In particular, Shikimic acid biosynthetic and flavonoid biosynthetic pathway genes are highly attractive for enzyme and metabolic engineered studies aiming for the biosynthesis of Shikimic acid and its derivatives in a microbial expression system. Pathways have so far been co-expressed

in model microorganisms for bioengineering the production of bioactive four different medically important flavonoids.

Bioprocessing covers the use of naturally occurring or engineered biological systems to produce commercially relevant products. Its most well-known incarnation is fermentation, which uses microbes to convert biomass or industrial feedstocks into products for food, beverages, pharmaceuticals, and biofuels on multiple scales, but is in fact applied at all scales and is relevant to a diverse range of biological organisms and products-natural and non-natural. On production of small molecules, proteins, and other regular-sized commodities with a structured or defined function that can be grown in bulk, use of naturally occurring or engineered biological systems is seen as a feasible route to a sustainable supply. The pipeline execution therefore involves high-throughput discovery through contemporary omics, directing chemical potential across the intended native or engineered biosynthetic pathways, and checking product quality and quantity. [286, 287, 288, 289]

Bioprocessing and fermentation technologies

Bioprocessing, defined as cumulative operations on biological systems for product formation, encompasses fermentation-a process where living cells convert substrates into valuable metabolites. While industrial fermentation typically employs a bioreactor, fermentation can also encompass simpler configurations, utilizing smaller vessels for either batch or fed-batch cultures. Large-scale fermentation operations are generally termed bioprocessing, which refers to product application and downstream processing requirements. Biorefineries leverage fermentation in producing biochemicals from biomass. Processes can be carried out in a co-culture or sequential manner, employing distinct fermenters or a single platform.

Bioprocess design must consider scale, fermentation duration, monitoring, substrate feeding kinetics, bioengineering design, bioreactor configuration and control automation, product separation, and economic viability. Batch, fed-batch, and continuous processes can be monitored for different stages, including cell growth rate, substrate utilization rate, metabolite production rate, and yield. Metabolite

stability, catalyst lifespan, and metabolite concentrations impact the duration and economic feasibility of bioprocesses, with solid-phase fermenters or co-culture combinations used for low-stability products. Bioengineering can optimize pathways via genetic approaches or by balancing startup growth phases by modulating culture conditions [^{290, 291, 292}].

Biochemical product development

Product pipelines involve multiple nonlinear phases—from identification through delivery to market—occasional scale-ups of basic biochemical research provide public and economic assets, but most discoveries offer little immediate practical utility before further development. Priority dictates that steps with favorable exploratory budgets attract forthcoming investment while least attractive routes may await serendipitous advances that reduce the costs of remaining obstacles. Target selection emerges from diverse motives, in combination or isolation, including publicity, perceived market potential, monopoly protection, and applied logic with consideration of revolution—and a truly bold constructor may cultivate genuine ignorance. Sources may include isolation from natural systems, extraction from unmodified biological systems, use of native fermentation, metabolic engineering of minor organisms, and totally artificial assembling of biosynthetic pathways for bulk production by conventional organisms.

Discovery demands the harmonization of the four dimensions of product development before transiting from exploratory progress to the engineering research phase that implements all appropriate design achievements and realizes sufficient innovation to validate applied ambition. Product development progresses through stages of exploration, prototyping and other forms of testing, full-scale implementation, and marketing. The exploratory phase concludes with built prototypes and the engineering research phase with large-scale demonstration. Thereafter, a production expansion is engineered in conjunction with publicity and stability testing. The built prototype serves as the marketing proof of concept and production development

project that realises the scale-up. Final production and delivery embody the phase typically recognised as product development. [293, 294, 295, 296]

Chapter - 17

Sustainable Biochemistry and Green Technologies

Biochemical research and application involve many processes. Green Chemistry aims to minimize environmental harm by substituting harmful substances and using safer solvents. The principles of Green Chemistry can be applied during biological research, scaling, and product synthesis, though a broader set of criteria is required for biochemistry. Key developments would minimize use of non-renewable resources, explore renewably produced biological materials and modifications, improve efficiency, and reduce side-products.

Biochemical processes in plants, algae, and bacteria have been explored as sources of biopolymers, plastics, and biofuels. Their production from renewable sources lowers reliance on fossil fuels, and life-cycle analyses often indicate a smaller carbon footprint than that of petrochemicals. However, large-scale production of biofuels, especially ethanol, from food crop sources has raised questions regarding its effect on food availability and cost. Such processes must be carefully designed to avoid unacceptable additional impact. Non-food biomass offers great potential, especially from agricultural residues such as straw or switchgrass and from non-food species such as pine. Future development of genetically engineered fermentations may permit greater variety of feedstock sources. ^[297, 298, 299]

Green chemistry principles in biochemistry

Biochemistry can embrace many green chemistry principles, but some of them are still difficult to implement. The prevention of waste, safer solvents and auxiliaries, design for energy efficiency, and more easily degradable products can all be followed in biochemical research and also be considered in the applications of biochemistry. A large fraction of biochemistry is already focused on the design of renewable

resources. Many biochemical technologies also produce biofuels, plastic materials, and feed-stocks for chemical synthesis with the aim of reducing the reliance on oil and petrochemical industries. The manufacturing processes of these materials are designed to minimize energy use during production. In cases where bio-based materials are produced as substitutes for fossil-based counterparts, life-cycle assessment is the tool best placed to address whether this truly corresponds with an overall reduction in resource use or if any additional, unforeseen burdens are generated.

The preparation of a Compound A as a biodegradable alternative for a conventional plastic (Compound B) also demonstrates practical implementation of this principle. Furthermore, the production of Compound A generates fewer toxic intermediates than the synthesis of Compound B, which reveals how the prevention of chemical accidents and the design of safer chemicals can also be considered during the design of renewable resources. The production of Compound A, like many biochemical processes, is inherently safer than its equivalent based on conventional chemistry: if the process involved the use of either concentrated sulfuric or phosphoric acids, the overall number of accidents would increase significantly. ^[300, 301, 302]

Renewable biochemical resources

Include a diverse array of bio-based materials that can replace petroleum-based materials currently in global use. Sustainable biomass production is a key aspect of these sustainable resources, and the extraction and processing of bio-based raw materials should be performed in accordance with access and benefit-sharing principles. By using renewable energy, greener variants of traditional production processes can be established that reduce energy demand and greenhouse gas emissions. The principles of green chemistry also guide R&D for bio-based materials and fuels to ensure that they are truly better for the environment than petroleum-based alternatives.

Biomass can serve as the feedstock for various bio-based products and materials since it is a renewable resource; indeed, biomass is the only renewable source of carbon that is currently used commercially for the production of bulk chemicals. Due to nutritional and economic

constraints, most of the available carbohydrates, lipids, and proteins found in food and feed are not classified as biomass. Unfortunately, there is also considerable competition for the use of sugars, starch and oils in particular, for food, feed, energy, and materials such as biodegradable plastics. The expression “food versus fuel” has often been used in the past years to stress the importance of managing these conflicts and finding solutions that allow the production of biochemicals without compromising food and feed production. In fact, the impact of the production of biofuels on food prices can be especially sensitive for the poorest populations, particularly because a large part of their income is spent on purchasing food. Rather than carbohydrates, the best candidates for new biochemical production processes are substances presently regarded as non-food or non-feed materials. Examples include sugar from non-food plants, such as sugar cane or sugar beet, and cellulose and lignin from wood, straw, vine-trimming waste, and other lignocellulosic fermentation residues. Such processes should result in the production of biochemical materials that are renewable, biodegradable, and non-toxic to the environment. [303, 304, 305, 306]

Bio-based materials and fuels

Production of bio-fuels and bio-based materials, such as bioplastics, is a major direct use of biology for human benefit. The synthesis of materials from biological feedstocks currently dominates the production of bioplastics fibre, such as Teflon and nylon. The diversion of materials from food supply to bioplastics production, such as biofuels, topical medication and lubricants, is more controversial, being interventions of energy and commodity markets undertaken in order to counter climate change.

Polylactic acid (PLA) and polybutylene succinate (PBS) are examples of bio-based and biodegradable bioplastics produced. PLA is produced by fermentation of starch crops or sugarcane, followed by polymerisation of lactic acid into polylactide, with subsequent annealing. Container closures are the main applications of PLA. PBS is produced from the branched-chain fatty-acid-based precursors 3-hydroxybutyrate and 3-hydroxy valerate. Poly-3-hydroxy-butyrate

(PHB) is another bio-plastic polyhydroxy alkanoate, issue of a one-step process, produced by microbes in high concentration.

Biolubrication refers to the use of natural hydraulic fluids. The investigation of natural tiny oils based on vegetable and animal fats, such as ghee (clarified butter), is an interesting development. Biofuels can be produced by any process for which there is a chemical equivalent utilising the glycolytic and/or TCA cycles; then the bacteria are grown on photo-resistant carriers or are used as free cells in these or paraphrased reactors, which contain a photo-sensitive dye (Methylene Blue, Azure companies, etc.) stabilised on a suitable carrier, such as clay, or incorporated in Plexiglass or in Ziegler foils.

The general components that lead to ice free results are the sugars -Glycerol, Glycerin and Polyols, Organic acids -Malic, Meletic, Citric, Alcohol -Ethylene glycol and EMHC's at low concentration with Free fatty acids act as co-surfactantissimi; in long term the Polyacrylates, Polymethacrylates -Alkyl acrylates with no disturbance to the environmentally biocide And biocidal activity compounds are useful in very low concentration. ^[307, 308, 309, 310]

Life-cycle assessment and sustainability

In addition to green chemistry principles, assessing the sustainability of biochemistry requires life-cycle evaluations of biochemical and biochemical engineering innovations. Life-cycle assessments (LCA) examine the environmental impacts of technologies from cradle (raw material extraction) to grave (waste disposal), calculating the associated energy, water, and resource use as well as greenhouse gas emissions. First outlined in the 1960s and now standardized by ISO 14,040, LCA considers the entire productive life cycle of a biochemical process or product. Attributional LCAs quantify the environmental loads associated with a specific product, while consequential LCAs evaluate the environmental consequences of an action. A typical study evaluates and compares multiple indicators, such as ecosystem degradation, resource depletion, human toxicity, acidification, eutrophication, and climate change.

Currently, LCA is increasingly being implemented to assess the environmental impacts of biochemicals as well as bioprocesses. Bio-

based chemicals offer an alternative approach for tackling climate change, since their production can be derived from renewable natural resources and their corresponding life-cycle assessments demonstrate lower greenhouse gas emissions and other environmental impacts relative to identical fossil-based ones. Galactose-derived 2-hydroxy-5-methylbenzodioxole, butanediol, fulvic acid, 3-hydroxybutyrate-co-3-hydroxy-hexanoate, bioethanol and bioethanol-acetic acid blend, poly (lactic acid)/starch-based plasticizer formulation, and isopropyl myristate are specific examples that have undergone LCA. Life-cycle assessment is also commonly employed to evaluate different fermentation technologies at varying scales, scrutinizing the effects of modifying specific parameters and conditions, as well as investigating the trade-offs between production efficiency and total operational costs, including capital and depreciation expenses. [311, 312, 313, 314]

Chapter - 18

Ethical, Societal, and Future Perspectives

Research impacting human health invariably raises ethical issues, particularly when conducted at the molecular level and involving novel biotechnological tools. Such studies may involve human subjects, animal models, genetically modified organisms, or dual-use outcomes (i.e. coincidental or deliberate applications that are harmful to human life or the environment). Unfortunately, responses to these ethical concerns (e.g. approval from ethics committees) often add significant delays or costs to research projects. Recommendations for minimizing ethical dilemmas (e.g. engaging ethicists and regulatory bodies at the design stage) remain valid and are brought to the fore here.

Epidemiological investigations of human populations provide rich insights into biochemical risk factors for disease. Such studies introduce new ethical and societal dilemmas that are less pertinent to work involving smaller organisms or isolated biochemical pathways. The sample sizes required to establish a meaningful link between specific biomarkers (e.g. serum PCBs or metallothioneins) and clinical outcomes or disease severities require collaboration over wide geographical areas, extending into economically deprived regions with different environmental exposures and access to health care. Research strategies must ensure that consideration of ethical issues does not delay analyses or findings for individual populations, but rather accompany them as they arise. Emphasis on continuation of research in these economically deprived regions is clearly important, as are additional developments of low-cost-monitoring technologies that assist in epidemiological studies.

A particularly difficult area arises from the potential for misuse of biochemistry research. Dual-use research concerns assistance to those aiming to develop chemical weapons, mass destruction, antibiotics to

reduce global population levels, or other similar misuses of knowledge. Dual-use biochemistry clearly poses a new ethical dilemma that scientists must attempt to address. An urgent priority is the development and adoption of strategies to avert research direction toward such ends and a framework for regulating information dissemination that does not stifle biochemistry, but at the same time prevents disclosure of information during a merely academic phase that might subsequently assist dual-use projects.

Ethical issues in biochemical research

Biochemical research raises ethical concerns in several areas. Obtaining informed consent is complicated when studying human samples because the material itself can be part of a diagnostic and therapeutic procedure. In addition, the donor of the tissue can be untraceable. The possibility of dual-use technology, defined as knowledge intended for peaceful purposes that may also enable harm, must be carefully considered. Additionally, the evaluation of new techniques warrants the existence of a governance policy. National and international guidelines regulating these criteria must be clearly defined.

When potential ethical conflicts are identified in biochemical research, their prevention and resolution should involve several parties, including scientists, institutions, governments, funding agencies, and society as a whole. Although there is no universal model applicable everywhere, it is necessary to develop a model that clearly defines the role of researchers and ethics committees in the various phases of conducting research. Such models should also provide recommendations on ethical dilemmas that arise during the conduct of research related to human health and the biosafety of naturally occurring and genetically modified microorganisms.

Biochemistry and public health

The greatest challenge to public health in the twenty-first century is the growing human population and its expanding metabolism. Populations are expanding and exploding everywhere in the world except Europe and North America. Grown by increasing levels of metabolism. At the same time, public health has set the adoption of the

potential illness of the world population in the twenty-first century. The coordination and integration of these biochemical/biophysical, epidemiological, economic, sociological, and politically regulated activities guided by and consistent are the means by which the concept of public health attempts to insure the safety of the population.

Biochemical population health begins with the population as an expandable community. The population dissects into smaller subdivisions (countries, cities, villages, and towns); works horizontally for horizontal population exposure; communicates through time; effect exposure systems change in space; and identifies potential hazards and illness. Risk is defined as the probability of acquiring an illness or dying from the exposure to a chemical. Risk can be expressed qualitatively (high, medium, low) or quantitatively (the actual risk). Behind the figure of a risk stand the people making the decision of life or death. The concept of life formula of biochemistry can be expressed as a higher-level metabolic equivalence-bioeconomic incomplete analysis of global change.

Emerging trends and technologies

An advancing understanding of fundamental biochemical processes is not only enhancing our ability to tackle past challenges, but is also opening up new areas of research with potentially far-reaching applications. Areas that have emerged recently include (i) synthetic biology, (ii) genome editing by CRISPR/Cas, (iii) organoid culture systems, (iv) microbiome research, (v) bioinformatics-based predictions of biological properties, (vi) data-driven applications of artificial intelligence, and (vii) efforts to establish brain-computer interfaces.

Synthetic biology, in its broadest sense, seeks to engineer biological systems that do not exist in nature and to modify existing systems in ways that cannot be achieved using classical genetic engineering approaches. Early successes include the design and construction of (i) systems with minimal genomes, (ii) artificial life forms with entirely synthetic genomes, (iii) large genome-scale pathways serving as platforms for chemical production, and (iv) engineered metabolic pathways in organisms that do not normally carry

them out. A major goal is to build a platform cell that can be easily and predictively programmed to produce any desired product.

The CRISPR/Cas system for genome editing is allowing scientists to make specific modifications in virtually every known organism and even complex animal models in a rapid, efficient, and simple manner. Coupled with organoid culture systems, it is expanding the genetic toolbox for cells and tissues that are difficult to study *in vivo*. Organoid culture systems are also providing new insights into the biochemical processes underlying development and disease in different organs.

The development of next-generation sequencing technologies has opened up new fields related to the analysis of the microbiome and metagenome. The growing wealth of sequence-based data on microbial diversity offers opportunities to identify new pathways and natural products, while the ability to predict the function and function of a microbial community is enabling a deeper understanding of the complex interactions within the community and its relationship with health and disease.

Future challenges and opportunities

Biochemistry has long been recognized as a keystone scientific discipline, and a wealth of literature attests to its far-reaching applications, spanning basic and applied research and serving as a cornerstone of health-related studies. Nonetheless, the trends, concerns, and overarching impacts of such a vast area remain harder to pinpoint. Growing chronic disease burdens, recent pandemics, and the widespread consequences of climate change underscore the multifaceted character of biochemistry and its relevance-as both a foundational discipline and an applied science. Addressing present and impending challenges while sowing the seeds for developing breakthroughs demands an understanding of emerging areas, potential applications, and societal ramifications.

The mapping of biochemistry's foundations and fabric highlights the substance and character of the discipline. A systems biology perspective reinforces biochemical organization and regulation from a network-based perspective that envelops lingering gaps and includes signal processing; systems-oriented tools; and the roles of

multicellularity, microorganisms, plants, and metabolism. Applications, drivers, and future trajectories are necessarily multifaced and multilayered. Public health implications, ethical considerations, and frontier fields such as synthetic biology, bioinformatics, and biocatalysis are dynamically linked and coalesce within the broader framework of sustainable biochemistry. In *The Future of Biochemistry*, Quaglia discusses the emerging research directions poised to shape the interface between biochemistry and medicine over the coming decade.

Chapter - 19

Conclusion

Core insights synthesized in the domains of biochemistry and biochemical engineering reveal essential understandings of living systems, identify disease mechanisms, examine environmental impacts, and connect biochemistry to biotechnological and engineering solutions for healthcare, industry, and pollution. These disciplines share a common foundation rooted in the molecular basis of life; the structure and function of biomolecules; the interaction, transport, and transformation of water, ions, and small molecules; and enzyme-catalyzed metabolic pathways that drive the biochemical activities of cells, tissues, and organisms. Such activities support an extraordinary diversity of life in constantly changing environments through authentic and opportunistic microbial metabolism, bidirectional morphogenetic relationships, and cellular signaling and communication networks that link response pathways operating over a wide range of timescales. The resulting biochemical cycles of the chemical elements describe the natural flow of elements through the biosphere and are essential for understanding the generation of waste products, which are increasingly produced in excess of natural degradation capacities by growing human populations. Molecular understanding of these pathways constitutes a fundamental basis for pollution control via bioremediation.

Modern applications of underlying principles have been employed to address the extreme phases of biochemistry and to harness and augment biosynthetic capability. Sustainable solutions, based on green chemistry principles, increasingly utilize renewable resources and chemical processes for the production of biobased materials and fuels. All facets of modern research inform consideration of future challenges and opportunities, including the looming threats of population growth, pollution, emergence of new diseases, and biosecurity, for which

biochemistry provides essential, and often unique, understanding and solutions.

References

1. S. Mondal and B. Bagchi, "From structure and dynamics to biomolecular functions: The ubiquitous role of solvent in biology," *Current Opinion in Structural Biology*, 2022. [HTML]
2. S. N. Timasheff, "Preferential interactions of water and cosolvents with proteins," *Protein-solvent interactions*, 2024. [HTML]
3. B. L. Dargaville and D. W. Hutmacher, "Water as the often neglected medium at the interface between materials and biology," *Nature communications*, 2022. nature.com
4. M. Medimagh, C. B. Mleh, N. Issaoui, "DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1, 4-dium bis ...," *Journal of Molecular*, vol. 2023, Elsevier. hal.science
5. G. Palla, D. S. Fischer, A. Regev, and F. J. Theis, "Spatial components of molecular tissue biology," *Nature Biotechnology*, 2022. [HTML]
6. A. Behanova, A. Klemm, and C. Wählby, "Spatial statistics for understanding tissue organization," *Frontiers in Physiology*, 2022. frontiersin.org
7. W. Zhang, Y. Li, A. A. Fung, Z. Li, H. Jang, H. Zha, "Multi-molecular hyperspectral PRM-SRS microscopy," *Nature*, 2024. nature.com
8. Y. Tao, X. Zhou, L. Sun, D. Lin, H. Cai, X. Chen, "Highly efficient and robust π -FISH rainbow for multiplexed *in situ* detection of diverse biomolecules," *Nature*, 2023. nature.com
9. M. Falandt, P. N. Bernal, O. Dudaryeva, *et al.*, "Spatial- selective volumetric 4D printing and single- photon grafting of biomolecules within centimeter- scale hydrogels via tomographic

manufacturing," *Advanced Materials*, vol. 2023, Wiley Online Library. wiley.com

10. Y. Hong, A. Boiti, D. Vallone, and N. S. Foulkes, "Reactive oxygen species signaling and oxidative stress: transcriptional regulation and evolution," *Antioxidants*, 2024. mdpi.com
11. R. Wang, P. Zhang, J. Wang, L. Ma, and W. E., "Construction of a cross-species cell landscape at single-cell level," *Nucleic Acids Research*, vol. 2023. oup.com
12. O. Lemke, B. M. Heineike, S. Viknander, N. Cohen, F. Li, "The role of metabolism in shaping enzyme structures over 400 million years," *Nature*, 2025. nature.com
13. S. Msweli, S. B. Pakala, and K. Syed, "NF- κ B transcription factors: their distribution, family expansion, structural conservation, and evolution in animals," *International Journal of Molecular ...*, 2024. mdpi.com
14. D. V. Matyushov, "Reorganization energy of electron transfer," *Physical Chemistry Chemical Physics*, 2023. rsc.org
15. P. Zhang, J. Zhang, T. Zhang, L. Zhang *et al.*, "Zero-valent iron enhanced methane production of anaerobic digestion by reinforcing microbial electron bifurcation coupled with direct inter-species electron transfer," *Water Research*, 2024. [HTML]
16. Y. Ilan, "Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ ...," *Molecular and Cellular Biochemistry*, 2023. [HTML]
17. G. You, C. Wang, P. Wang, J. Chen *et al.*, "... of nanoscale zero-valent iron explains its biological effects in anaerobic digestion: from ferroptosis-like death to magnetite-enhanced direct electron transfer networks," *Water Research*, 2023. [HTML]
18. M. M. Patten, M. A. Schenkel, and J. A. Ågren, "Adaptation in the face of internal conflict: the paradox of the organism revisited," *Biological Reviews*, 2023. wiley.com

19. S. S. Arndt, V. C. Goerlich, and F. J. van der Staay, "A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal's ability to adapt to them," *Frontiers in Animal Science*, 2022. frontiersin.org
20. L. Bich and W. Bechtel, "Organization needs organization: Understanding integrated control in living organisms," *Studies in History and Philosophy of Science*, 2022. [sciencedirect.com](https://www.sciencedirect.com)
21. S. Wang and L. Qin, "Homeostatic medicine: a strategy for exploring health and disease," *Current Medicine*, 2022. [springer.com](https://www.springer.com)
22. M. C. Storer and C. A. Hunter, "The surface site interaction point approach to non-covalent interactions," *Chemical Society Reviews*, 2022. rsc.org
23. R. T. Ayinla, M. Shiri, B. Song, M. Gangishetty, "The pivotal role of non-covalent interactions in single-molecule charge transport," *Materials Chemistry*, vol. 2023. rsc.org
24. T. Mao, P. Wescombe, and M. S. Mohan, "Predominance of non-covalent interactions of polyphenols with milk proteins and their health promoting properties," *Critical Reviews in Food Science and Nutrition*, 2024. [HTML]
25. P. Peluso and B. Chankvetadze, "Recognition in the domain of molecular chirality: from noncovalent interactions to separation of enantiomers," *Chemical Reviews*, 2022. cnr.it
26. C. A. Obasanjo, G. Gao, J. Crane, V. Golovanova, *et al.*, "High-rate and selective conversion of CO₂ from aqueous solutions to hydrocarbons," *Nature*, 2023. nature.com
27. N. I. Gumerova and A. Rompel, "Speciation atlas of polyoxometalates in aqueous solutions," *Science Advances*, 2023. science.org
28. J. Zhang, S. Zhan, L. B. Zhong, X. Wang, Z. Qiu, "Adsorption of typical natural organic matter on microplastics in aqueous solution: Kinetics, isotherm, influence factors and mechanism," *Journal of Hazardous Materials*, vol. 2023, Elsevier. [HTML]

29. G. R. Pastel, Y. Chen, T. P. Pollard, "A sobering examination of the feasibility of aqueous aluminum batteries," **Energy & Environmental Science**, vol. 15, no. X, pp. Y-Z, 2022. rsc.org

30. A. Bellelli, "Blood buffers: The viewpoint of a biochemist," *Physiological Reports*, 2025. wiley.com

31. S. A. Freeman and S. Grinstein, "Determinants, maintenance, and function of organellar pH," **Physiological Reviews**, vol. 2023. physiology.org

32. X. Cui, L. Wu, C. Zhang, and Z. Li, "Implantable self- powered systems for electrical stimulation medical devices," *Advanced Science*, 2025. wiley.com

33. G. Liu, Z. An, Y. Lu, Y. Wu, Z. Shi, X. Li, J. Lv, and H. Wen, "High-output moisture-enabled electricity generator for fully self-powered wearable physical and biochemical monitoring," *Nano Energy*, 2024. [HTML]

34. S. J. Grabowski, "Hydrogen bond types which do not fit accepted definitions," *Chemical Communications*, 2024. rsc.org

35. H. A. Fargher, T. J. Sherbow, M. M. Haley, "C–H… S hydrogen bonding interactions," *Chemical Society Reviews*, vol. 2022. rsc.org

36. Z. S. Derewenda, "CH groups as donors in hydrogen bonds: A historical overview and occurrence in proteins and nucleic acids," *International Journal of Molecular Sciences*, 2023. mdpi.com

37. H. Han, Z. Chen, H. Wang, Y. Zhang, H. Chen, "Hydrogen bond recombination regulated by strongly electronegative functional groups in demulsifiers for efficient separation of oil–water emulsions," *Journal of Hazardous Materials*, vol. 2024, Elsevier. ssrn.com

38. S. P. Ijardar, V. Singh, and R. L. Gardas, "Revisiting the physicochemical properties and applications of deep eutectic solvents," *Molecules*, 2022. mdpi.com

39. O. V. Morozova, I. S. Vasil'eva, G. P. Shumakovich, "Deep eutectic solvents for biotechnology applications," *Biochemistry*, vol. 2023, Springer. [HTML]

40. B. C. Klein, B. Scheidemantle, R. J. Hanes, "Economics and global warming potential of a commercial-scale delignifying biorefinery based on co-solvent enhanced lignocellulosic fractionation to produce ...," *Energy & ...*, 2024. rsc.org

41. M. J. Lopez and S. S. Mohiuddin, "Biochemistry, essential amino acids," *StatPearls* [Internet], 2024. nih.gov

42. D. Bisht, H. Maurya, T. Joshi, T. Belwal, A. Dhariwal, "Amino acid: essential building blocks for human body," in **Antioxidants effects in ...**, 2022, Elsevier. [HTML]

43. Y. Wang, S. Rencus-Lazar, H. Zhou, Y. Yin, X. Jiang, "Bioinspired amino acid based materials in bionanotechnology: from minimalistic building blocks and assembly mechanism to applications," *ACS Publications*, 2023. [HTML]

44. I. Sosič, A. Bricelj, and C. Steinebach, "E3 ligase ligand chemistries: from building blocks to protein degraders," *Chemical Society Reviews*, 2022. [HTML]

45. B. Park, J. Jung, D. H. Lim, H. Lee, S. Park, "Significant dark current suppression in organic photodetectors using side chain fluorination of conjugated polymer," **Advanced Functional Materials**, vol. 32, no. 12, 2022. wiley.com

46. J. Rey, S. Murail, S. de Vries, P. Derreumaux, and others, "PEP-FOLD4: a pH-dependent force field for peptide structure prediction in aqueous solution," **Nucleic Acids Research**, vol. 2023. oup.com

47. C. Sun, J. W. Lee, S. Seo, S. Lee, C. Wang, *et al.*, "Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high- performance all- polymer solar cells with 15.1% efficiency," **Advanced Energy Materials**, vol. 12, no. 22, 2022. [HTML]

48. H. Hu, S. Liu, J. Xu, R. Ma, Z. Peng, "Over 19% efficiency organic solar cells enabled by manipulating the intermolecular interactions through side chain fluorine functionalization," *Angewandte Chemie*, 2024. [HTML]

49. L. Zhang, W. F. Lin, Y. Zhang, and C. H. Tang, "New insights into the NaCl impact on emulsifying properties of globular proteins," *Food Hydrocolloids*, 2022. [HTML]

50. Q. Sun, "The hydrophobic effects: Our current understanding," *Molecules*, 2022. [mdpi.com](https://www.mdpi.com)

51. A. Paladino, L. Vitagliano, and G. Graziano, "The action of chemical denaturants: from globular to intrinsically disordered proteins," *Biology*, 2023. [mdpi.com](https://www.mdpi.com)

52. W. Cao, R. Gao, X. Wan, Z. He, J. Chen, Y. Wang, and W. Hu, "Effects of globular and flexible structures on the emulsifying and interfacial properties of mixed soy proteins," **Food Science**, vol. 2022, Elsevier. [HTML]

53. L. Leaerts, J. R. Porras-Domínguez, M. Versluys, *et al.*, "A Refined Nomenclature System to Better Discriminate Endo-and Exo-Type Fructanases and Glucanases," *Biomolecules*, 2024. [mdpi.com](https://www.mdpi.com)

54. M. A. B. Morais, A. Nin-Hill, and C. Rovira, "Glycosidase mechanisms: Sugar conformations and reactivity in endo-and exo-acting enzymes," *Current Opinion in Chemical Biology*, 2023. [sciencedirect.com](https://www.sciencedirect.com)

55. K. Guseva, M. Mohrlok, L. Alteio, H. Schmidt, "Bacteria face trade-offs in the decomposition of complex biopolymers," *PLOS Computational Biology*, 2024. plos.org

56. X. Liu and C. Kokare, "Microbial enzymes of use in industry," *Biotechnology of microbial enzymes*, 2023. [HTML]

57. G. G. Babaniyi and O. V. Olagoke, "Extracellular enzymatic activity of bacteria in aquatic ecosystems," in **Microbiology for cleaner ...**, 2023. [HTML]

58. P. W. Reddien, "The purpose and ubiquity of turnover," *Cell*, 2024. cell.com

59. R. P. Ferreira and J. A. Duarte, "Protein turnover in skeletal muscle: looking at molecular regulation towards an active lifestyle," **International Journal of Sports**, 2023. thieme-connect.com

60. M. Gupta, A. N. T. Johnson, E. R. Cruz, E. J. Costa, "Global protein turnover quantification in *Escherichia coli* reveals cytoplasmic recycling under nitrogen limitation," **Nature**, 2024. nature.com

61. Y. Fu, X. Li, B. Fan, C. Zhu, and Z. Chen, "Chloroplasts protein quality control and turnover: a multitude of mechanisms," **International Journal of Molecular**, vol. 2022. mdpi.com

62. I. I. Udema, "... Michaelis–Menten mathematical formalism wherein the substrate concentration range is approximately 1.6 to 4.8 times enzyme concentration: A pre-steady ...," *World J. Adv. Res. Rev.*, 2022. researchgate.net

63. A. Hernandez, "Mathematical expressions describing enzyme velocity and inhibition at high enzyme concentration," *Biological Chemistry*, 2023. biorxiv.org

64. P. F. Zhuk and S. O. Karakhim, "Two different types of kinetics, where the initial rate increases faster or slower than the reactant concentration, can coexist on bell-shaped kinetic dependencies," *Journal of Mathematical Chemistry*, 2023. researchsquare.com

65. O. O. Ige, T. Hendrickson-Rebantz, W. Luo, "SET7/9 exhibits sigmoidal kinetics on nucleosomes, hyperbolic kinetics on histones by an ordered sequential mechanism and methylates lysine and arginine," **Journal of Biological ...**, 2025. sciencedirect.com

66. M. D. Hartman, B. E. Rojas, A. A. Iglesias, *et al.*, "The involvement of allosteric effectors and post- translational modifications in the control of plant central carbon metabolism," *The Plant ...*, vol. 2023, Wiley Online Library. wiley.com

67. W. V. Tee, S. J. M. Lim, and I. N. Berezovsky, "Toward the design of allosteric effectors: gaining comprehensive control of drug properties and actions," *Journal of Medicinal Chemistry*, 2024. acs.org

68. H. Cai, S. Shulami, Z. Štefanić, T. Hrenar, "Allosteric regulation of L- lactate dehydrogenase: Beyond effector- mediated tetramerization," **Protein**, 2025. wiley.com

69. Y. A. Purtov and O. N. Ozoline, "Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors," *International Journal of Molecular Sciences*, 2023. mdpi.com

70. P. Dias, T. Siatka, M. Vopršalová, and M. Moravcová, "Biological properties of vitamins of the B-complex, part 2–vitamins B6 and B7 (biotin, vitamin H)," *Nutrition Research*, vol. XX, no. YY, pp. ZZ-ZZ, Year. cambridge.org

71. F. Palmieri, M. Monné, G. Fiermonte, and L. Palmieri, "Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+, and related diseases: A review," *IUBMB life*, 2022. wiley.com

72. M. Hrubša, T. Siatka, I. Nejmanová, and M. Vopršalová, "Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5," *Nutrients*, vol. 14, no. 6, 2022. mdpi.com

73. S. Mukherjee, O. Banerjee, and S. Singh, "The role of B vitamins in protecting mitochondrial function," *Molecular Nutrition and Mitochondria*, 2023. [HTML]

74. S. Sharma, S. Kour, A. U. Avatsingh, N. Kumar, "Microbial enzymes in laundry detergents: Recent advances, future prospects, and risk assessment," *Enzyme Biotechnology*, vol. 2024, Elsevier. [HTML]

75. T. C. Trevisol, R. O. Henriques, A. J. A. Souza, *et al.*, "An overview of the use of proteolytic enzymes as exfoliating agents," **Journal of Cosmetic**, vol. 2022, Wiley Online Library. [HTML]

76. A. K. Patel, C. D. Dong, C. W. Chen, A. Pandey, "Production, purification, and application of microbial enzymes," in *Journal of Microbial Enzymes*, 2023, Elsevier. [HTML]

77. M. Inès, B. Mouna, E. Marwa, and G. Dhouha, "Biosurfactants as emerging substitutes of their synthetic counterpart in detergent formula: efficiency and environmental friendly," *Journal of Polymers and the ...*, vol. 2023, Springer. [HTML]

78. J. Mattick and P. Amaral, "RNA, the epicenter of genetic information," 2023. oapen.org

79. M. G. Durrant, N. T. Perry, J. J. Pai, A. R. Jangid, "Bridge RNAs direct programmable recombination of target and donor DNA," Nature, 2024. nature.com

80. L. Shao, J. Ma, J. L. Prelesnik, Y. Zhou, M. Nguyen, *et al.*, "Hierarchical materials from high information content macromolecular building blocks: construction, dynamic interventions, and prediction," *Chemical*, vol. 2022, ACS Publications. osti.gov

81. F. Prosdocimi and S. T. de Farias, "Origin of life: Drawing the big picture," Progress in biophysics and molecular biology, 2023. [HTML]

82. E. Generalov and L. Yakovenko, "Receptor basis of biological activity of polysaccharides," Biophysical Reviews, 2023. nih.gov

83. C. B. Lebrilla, J. Liu, G. Widmalm, *et al.*, "Oligosaccharides and polysaccharides," *Journal of Glycobiology*, 2022. nih.gov

84. L. Xu, D. He, C. Zhang, Y. Bai *et al.*, "The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease," Journal of Functional Foods, 2022. sciencedirect.com

85. G. Sun, Y. Xiao, H. Yin, K. Yu *et al.*, "Oligosaccharide elicitors in plant immunity: Molecular mechanisms and disease resistance strategies," Plant Communications, 2025. cell.com

86. K. Mikolajczyk, M. Czerwinski, and R. Kaczmarek, "Glycoproteins, Glycolipids, or Both: Why do Glycosyl

transferases Recognize Different Acceptors?," *Chembiochem*, 2025. [HTML]

87. R. L. Schnaar, R. Sandhoff, and M. Tiemeyer, "Glycosphingolipids," 4th ed., 2022. nih.gov
88. R. D. Cummings, "Evolution and diversity of Glycomolecules from unicellular organisms to humans," in *New perspectives on the origin and evolution of life*, 2024. sciendo.com
89. S. Perez and O. Makshakova, "Multifaceted computational modeling in glycoscience," *Chemical Reviews*, 2022. hal.science
90. J. Liao, R. Chen, B. Lin, R. Deng, Y. Liang, "Cross-talk between the TGF- β and cell adhesion signaling pathways in cancer," *Journal of Medical*, 2024. nih.gov
91. J. E. Anderson, "Key concepts in muscle regeneration: muscle “cellular ecology” integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function," *European journal of applied physiology*, 2022. nih.gov
92. D. Khayatan and A. Bagherzadeh Oskouei, "Cross talk between cells and the current bioceramics in bone regeneration: a comprehensive review," *Cell*, vol. 2024. sagepub.com
93. B. Wu, X. Shi, M. Jiang, and H. Liu, "Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment," *Molecular Cancer*, 2023. springer.com
94. R. De Masi and S. Orlando, "GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review," *International Journal of Molecular Sciences*, 2022. mdpi.com
95. Q. Zhang, C. Ma, L. S. Chin, S. Pan *et al.*, "Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease," *Science advances*, 2024. science.org
96. K. Flevaris and C. Kontoravdi, "Immunoglobulin G N-glycan biomarkers for autoimmune diseases: current state and a

glycoinformatics perspective," International journal of molecular sciences, 2022. mdpi.com

97. H. Yang, Z. Lin, B. Wu, J. Xu, and S. C. Tao, "Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights," *Acta Biochimica et...*, 2024. nih.gov
98. E. Kuźniak and E. Gajewska, "Lipids and lipid-mediated signaling in plant-pathogen interactions," *International Journal of Molecular Sciences*, 2024. mdpi.com
99. J. Fyfe, I. Casari, M. Manfredi, and M. Falasca, "Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication," *Cytokine & growth factor reviews*, 2023. sciencedirect.com
100. A. K. Wrońska, A. Kaczmarek, M. I. Boguś, and A. Kuna, "Lipids as a key element of insect defense systems," *Frontiers in Genetics*, 2023. frontiersin.org
101. O. Ali and A. Szabó, "Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids," *International journal of molecular sciences*, 2023. mdpi.com
102. J. T. Talley and S. S. Mohiuddin, "Biochemistry, fatty acid oxidation," *StatPearls [Internet]*, 2023. nih.gov
103. P. Avato and A. Tava, "Rare fatty acids and lipids in plant oilseeds: occurrence and bioactivity," *Phytochemistry Reviews*, 2022. springer.com
104. S. Scott, E. B. Cahoon, and L. Busta, "Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants," *The Plant Journal*, 2022. wiley.com
105. K. Wang, T. Q. Shi, L. Lin, P. Wei, *et al.*, "Engineering *Yarrowia lipolytica* to Produce Tailored Chain-Length Fatty Acids and Their Derivatives," **ACS Synthetic Biology**, vol. 2022. [HTML]
106. J. Luo, R. Qiao, and B. Ding, "Enhancement of ion selectivity and permeability in two-dimensional material membranes," *Matter*, 2024. sciencedirect.com

107. R. S. Kingsbury, M. A. Baird, J. Zhang, H. D. Patel, M. J. Baran, "Kinetic barrier networks reveal rate limitations in ion-selective membranes," *Matter*, 2024. cell.com

108. P. Zuo, Z. Xu, Q. Zhu, J. Ran, L. Ge, and X. Ge, "Ion exchange membranes: constructing and tuning ion transport channels," **Advanced Functional Materials**, vol. 32, no. 12, 2022. [HTML]

109. L. Wang, X. Zhu, C. Xu, D. Jin, and X. Ma, "Artificial breakthrough of cell membrane barrier for transmembrane substance exchange: a review of recent progress," **Advanced Functional Materials**, vol. 34, no. 1, 2024. [HTML]

110. E. A. Al-Suhaimi, M. A. Aljafary, H. Aldossary, *et al.*, "Mechanism of hormones secretion and action," in **Structure and Functions**, 2022, Springer. [HTML]

111. B. Ren and Y. Zhu, "A new perspective on thyroid hormones: crosstalk with reproductive hormones in females," *International journal of molecular sciences*, 2022. mdpi.com

112. J. X. Wang, L. Fu, Q. Lei, and J. Y. Zhuang, "Ovarian hormones predict cooperative strategies updating during multiple rounds of the prisoner's dilemma," *Acta Psychologica*, 2024. sciencedirect.com

113. L. E. Eiden, V. S. Hernández, S. Z. Jiang, and L. Zhang, "Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system," **Cellular and Molecular Life Sciences**, vol. 79, no. 2, 2022. springer.com

114. P. M. M. Ruppert and S. Kersten, "Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting," *Trends in Endocrinology & Metabolism*, 2024. wur.nl

115. A. V. Panov, V. I. Mayorov, and S. I. Dikalov, "Role of fatty acids β -oxidation in the metabolic interactions between organs," **International Journal of Molecular ...**, 2024. mdpi.com

116. A. Panov, V. I. Mayorov, and S. Dikalov, "Metabolic syndrome and β -oxidation of long-chain fatty acids in the brain, heart, and

kidney mitochondria," *International Journal of Molecular ...*, vol. 2022. mdpi.com

117. J. Kondo and S. Nakamura, "BasePairPuzzle: molecular models for manipulating the concept of hydrogen bonds and base pairs in nucleic acids," 2023. acs.org
118. S. Jena, J. Dutta, K. D. Tulsiyan, A. K. Sahu, "Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π -stacking," Chemical Society Reviews, vol. 51, no. 1, pp. 123-145, 2022. [HTML]
119. Y. Liu, L. Wang, L. Zhao, Y. Zhang, and Z. T. Li, "Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications," Chemical Society, 2024. [HTML]
120. M. Egli, "DNA and RNA structure," 2022. [HTML]
121. D. Kato, "Exploring the dynamic world of DNA and RNA: from structure to function and beyond," INOSR Appl Sci, 2024. researchgate.net
122. T. A. Brown, "Genomes 5," 2023. ethz.ch
123. O. I. Wilner, D. Yesodi, and Y. Weizmann, "RNA nanostructures: from structure to function," Bioconjugate Chemistry, 2022. [HTML]
124. M. C. Coyle and N. King, "The evolutionary foundations of transcriptional regulation in animals," Nature Reviews Genetics, 2025. [HTML]
125. G. H. Lyman, C. H. Lyman, and N. M. Kuderer, "The nature, origin, and evolution of life: part IV cellular differentiation and the emergence of multicellular life," Cancer Investigation, 2024. tandfonline.com
126. E. Sousa and N. Flames, "Transcriptional regulation of neuronal identity," European Journal of Neuroscience, 2022. wiley.com
127. C. Belmonte-Mateos and C. Pujades, "From cell states to cell fates: how cell proliferation and neuronal differentiation are

coordinated during embryonic development," *Frontiers in Neuroscience*, 2022. frontiersin.org

128. J. A. Nickoloff, A. S. Jaiswal, N. Sharma, *et al.*, "Cellular responses to widespread DNA replication stress," **International Journal of...**, 2023. mdpi.com
129. A. Serdyuk and T. Allers, "DNA Replication in Time and Space: The Archaeal Dimension," *DNA*, 2025. mdpi.com
130. P. Fu, Y. Wang, Y. Liu, Z. Han, Z. Peng, and L. Liu, "A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair," **Nucleic Acids**, 2025. oup.com
131. R. D. Wood and S. Doublie, "Genome protection by DNA polymerase θ ," *Annual review of genetics*, 2022. nih.gov
132. L. A. Passmore and J. Coller, "Roles of mRNA poly (A) tails in regulation of eukaryotic gene expression," *Nature Reviews Molecular Cell Biology*, 2022. nih.gov
133. M. Warminski, A. Mamot, A. Depaix, *et al.*, "Chemical modifications of mRNA ends for therapeutic applications," **Accounts of Chemical Research**, vol. 2023, ACS Publications. acs.org
134. V. Solodushko and B. Fouty, "Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail," *Gene Therapy*, 2023. nature.com
135. J. B. Rodríguez- Molina and M. Turtola, "Birth of a poly (A) tail: mechanisms and control of mRNA polyadenylation," *FEBS Open Bio*, 2023. wiley.com
136. S. G. Leles and N. M. Levine, "Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming," *Science Advances*, 2023. science.org
137. C. F. Bennett, P. Latorre-Muro, and P. Puigserver, "Mechanisms of mitochondrial respiratory adaptation," **Nature Reviews Molecular Cell Biology**, vol. 23, no. 1, pp. 1-16, 2022. nih.gov

138. D. L. Rothman, P. B. Moore, and R. G. Shulman, "The impact of metabolism on the adaptation of organisms to environmental change," *Frontiers in Cell and ...*, 2023. frontiersin.org

139. X. Xu, J. Li, X. Li, C. Fang *et al.*, "Thermal adaptation of respiration in terrestrial ecosystems alleviates carbon loss," *Nature Climate Change*, 2025. researchgate.net

140. S. Kumari and S. Das, "Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations," *Environmental Science and Pollution Research*, 2023. [HTML]

141. J. Cao, C. Zhang, X. Li, X. Wang *et al.*, "Microbial community and metabolic pathways in anaerobic digestion of organic solid wastes: Progress, challenges and prospects," *Fermentation*, 2025. mdpi.com

142. W. Xu, B. Yang, H. Wang, L. Zhang, J. Dong, "Simultaneous removal of antibiotics and nitrogen by microbial fuel cell-constructed wetlands: Microbial response and carbon–nitrogen metabolism pathways," *Science of The Total Environment*, vol. 2023, Elsevier. [HTML]

143. M. Sharma, M. Jalalah, S. A. Alsareii, F. A. Harraz, *et al.*, "Fat, oil, and grease as new feedstock towards bioelectrogenesis in microbial fuel cells: Microbial diversity, metabolic pathways, and key enzymes," *Journal of Energy*, vol. 2023, Elsevier. [HTML]

144. D. F. Wilson and F. M. Matschinsky, "Integration of Eukaryotic Energy Metabolism: The Intramitochondrial and Cytosolic Energy States (f/f)," *International journal of molecular sciences*, 2022. mdpi.com

145. L. Bar-Peled and N. Kory, "Principles and functions of metabolic compartmentalization," *Nature metabolism*, 2022. nih.gov

146. L. Perez, X. W. Ng, M. Mohs, D. W. Piston *et al.*, "Mitochondrial position responds to glucose stimulation in a model of the pancreatic beta cell," *Biophysical Journal*, 2025. cell.com

147. N. Koju and R. Sheng, "Sources and Cellular Distribution of Coenzyme II," in **Biology of Nicotinamide Coenzymes: From Basic ...**, 2025, Springer. [HTML]

148. D. Zhang, Y. Wei, Q. Huang, Y. Chen, K. Zeng, and W. Yang, "Important hormones regulating lipid metabolism," *Molecules*, 2022. [mdpi.com](https://www.mdpi.com)

149. B. A. A. Sai Kumar, "Hormonal regulation of metabolism, water, and minerals," *Textbook of veterinary physiology*, 2023. [HTML]

150. F. Athar, M. Karmani, and N. M. Templeman, "Metabolic hormones are integral regulators of female reproductive health and function," *Bioscience reports*, 2024. [portlandpress.com](https://www.portlandpress.com)

151. R. Karimi, A. Yanovich, F. Elbarbry, and A. Cleven, "Adaptive effects of endocrine hormones on metabolism of macronutrients during fasting and starvation: A scoping review," *Metabolites*, 2024. [mdpi.com](https://www.mdpi.com)

152. A. L. Jaffe, C. J. Castelle, and J. F. Banfield, "Habitat transition in the evolution of bacteria and archaea," **Annual Review of ...**, 2023. [annualreviews.org](https://www.annualreviews.org)

153. P. S. Garcia, S. Gribaldo, and G. Borrel, "Diversity and evolution of methane-related pathways in archaea," *Annual Review of Microbiology*, 2022. hal.science

154. W. S. Shu and L. N. Huang, "Microbial diversity in extreme environments," *Nature Reviews Microbiology*, 2022. units.it

155. A. Gutiérrez-Preciado, B. Dede, B. A. Baker, *et al.*, "Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines," **Nature Ecology & Evolution**, 2024. biorxiv.org

156. M. Garrido-Rodriguez, K. Zirngibl, O. Ivanova, *et al.*, "Integrating knowledge and omics to decipher mechanisms via large- scale models of signaling networks," **Molecular Systems Biology**, vol. 18, no. 10, 2022. embopress.org

157. M. Mobashir, S. P. Turunen, M. A. Izhari, I. M. Ashankty, *et al.*, "An approach for systems-level understanding of prostate cancer

from high-throughput data integration to pathway modeling and simulation," *Cells*, vol. 11, no. 11, 2022. mdpi.com

158. X. Lai, Y. Xiang, S. Liu, Y. Zhang, Y. Zhang, Z. Chen, and S. Liu, "CRISPR/Cas9-Mediated pds Knockout in Potato Reveals Network-Level Transcriptomic Reorganization Beyond Pigment Loss," *Plants*, 2025. mdpi.com
159. V. Voicu, C. Toader, M. Ţerban, R. A. Covache-Busuio, "Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS," *Biomedicines*, 2025. mdpi.com
160. E. A. Al-Suhaimi, "Introduction to Endocrinology," in *Concepts in Endocrine Structure and Functions*, 2022, Springer. [HTML]
161. S. Brunell, E. Pettersson Gradin, V. Englöf, L. Wigertz, "Decoding Hormone Interactions: Investigating Health Status Using Hormone Signatures in Blood," 2023. diva-portal.org
162. S. A. Carrion and Z. Jiang, "Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman WA 99164-7620, USA," in **Genome Function and Health**, 2024. wsu.edu
163. D. Thikar, G. G. Naik, S. Verma, and D. Thapliyal, "Polymeric sensors for blood analysis: current and future scope of research," *Polymer*, vol. 2025, Wiley Online Library. [HTML]
164. M. Hu, X. Feng, Q. Liu, S. Liu, and F. Huang, "The ion channels of endomembranes," **Physiological Reviews**, vol. 104, no. 1, pp. 123-145, 2024. physiology.org
165. R. E. Dixon and J. S. Trimmer, "Endoplasmic Reticulum–Plasma Membrane Junctions as Sites of Depolarization-Induced Ca²⁺ Signaling in Excitable Cells," *Annual review of physiology*, 2023. annualreviews.org
166. L. Daverkausen-Fischer and F. Pröls, "Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol," *Journal of Biological Chemistry*, 2022. jbc.org

167. N. L. Chanaday and E. T. Kavalali, "Role of the endoplasmic reticulum in synaptic transmission," *Current opinion in neurobiology*, 2022. [sciencedirect.com](https://www.sciencedirect.com)

168. L. C. Panzera, B. Johnson, J. A. Quinn, I. H. Cho, "... -dependent endoplasmic reticulum Ca²⁺ uptake depends on Kv2.1-mediated endoplasmic reticulum/plasma membrane junctions to promote synaptic transmission," **Proceedings of the National Academy of Sciences**, 2022. [pnas.org](https://www.pnas.org)

169. E. M. Templeton, L. J. Chang, E. A. Reynolds, "Fast response times signal social connection in conversation," **Proceedings of the National Academy of Sciences**, vol. 119, no. 52, 2022. [pnas.org](https://www.pnas.org)

170. D. Guo, D. Yang, H. Zhang, J. Song, P. Wang, Q. Zhu, and R. Xu, "DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning," *Nature*, 2025. [nature.com](https://www.nature.com)

171. D. Jayalath, S. Goel, T. Foster, P. Jain, "Compute as teacher: Turning inference compute into reference-free supervision," *arXiv preprint arXiv:XXXX.XXXX*, 2025. [PDF]

172. D. Ruan, J. Wang, J. Yan, and C. Gühmann, "CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis," *Advanced Engineering Informatics*, 2023. [sciencedirect.com](https://www.sciencedirect.com)

173. B. Rana and G. K. Joshi, "Electrophoresis: Basic principle, types, and applications," in **Basic Biotechniques for Bioprocess and ...**, Elsevier, 2023. [HTML]

174. M. Shah, N. Patel, N. Tripathi, and V. K. Vyas, "Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade," *Journal of Pharmaceutical Analysis*, 2022. [sciencedirect.com](https://www.sciencedirect.com)

175. L. Hajba, S. Jeong, D. S. Chung, and A. Guttman, "Capillary gel electrophoresis of proteins: historical overview and recent advances," *TrAC Trends in Analytical Chemistry*, vol. 2023, Elsevier. [sciencedirect.com](https://www.sciencedirect.com)

176. S. Yao, S. Kalami, S. Nam, J. B. Goodenough *et al.*, "Development of an Electrophoretic Deposition Method for the In Situ Fabrication of Ultra- Thin Composite- Polymer Electrolytes for Solid- State Lithium- Metal Batteries," *Small*, 2023. [HTML]

177. G. Yang, W. Tian, Y. Hu, Y. Wen, Y. Zhao, G. Jiang, and H. Liu, "Real-time visualization of 'small Molecules-ssDNA' complexes for aptamer screening based on online competition CE-SELEX," *Talanta*, 2025. [HTML]

178. G. P. Szekeres, E. Moon, J. K. Elter, B. Roper, "Glycosaminoglycans as Polyelectrolytes: Charge, Interactions, and Applications," *Wiley Online Library*, 2025. wiley.com

179. U. E. Senadheera and J. Jayasanka, "A conceptual electrophoresis-mediated protein identification method by frictional coefficient during motion under electrical and magnetic interference," *University of Colombo Review*, 2022. sljol.info

180. R. Li, A. D. True, L. Sha, and Y. L. Xiong, "Structure–functionality relationship and modification strategies of oat protein: Challenges and opportunities," **Comprehensive Reviews in Food Science and Food Safety**, 2025. researchgate.net

181. A. Mandru, J. Mane, and R. Mandapati, "A Review on UV-visible spectroscopy," *Journal of Pharma Insights and Research*, 2023. jopir.in

182. M. Bunzel and M. H. Penner, "Ultraviolet, Visible, and Fluorescence Spectroscopy," *Nielsen's Food Analysis*, 2024. [HTML]

183. C. Vogt, C. S. Wondergem, and B. M. Weckhuysen, "Ultraviolet-visible (UV-Vis) spectroscopy," in **Springer Handbook of ...**, 2023, Springer. uu.nl

184. S. Ghosh and S. Nandi, "A Comprehensive Review on UV- Visible Spectroscopy and Its application," *Int. J. All Res. Education Sci. Methods*, 2024. researchgate.net

185. D. Das, S. Sarma, D. J. Gogoi, A. Gogoi, C. Chikkaputtaiah, "Uncovering Plant–Herbivore Interactions," 2025. researchgate.net

186. K. Fan, "Metabolomics: insights into plant-pathogen, symbiont, and endophyte interactions unveiling chemical communications," Metabolomics, 2024. authorea.com

187. M. Luo, B. Li, G. Jander, and S. Zhou, "Non- volatile metabolites mediate plant interactions with insect herbivores," The Plant Journal, 2023. wiley.com

188. P. A. Divekar, S. Narayana, B. A. Divekar, and R. Kumar, "Plant secondary metabolites as defense tools against herbivores for sustainable crop protection," *International Journal of ...*, 2022. mdpi.com

189. R. Kabacoff, "R in action: data analysis and graphics with R and Tidyverse," 2022. academia.edu

190. Z. Yu, M. Guindani, S. F. Grieco, L. Chen *et al.*, "Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research," Neuron, 2022. cell.com

191. F. M. Giorgi, C. Ceraolo, and D. Mercatelli, "The R language: an engine for bioinformatics and data science," Life, 2022. mdpi.com

192. I. Alcocer, H. Lima, L. S. M. Sugai, and D. Llusia, "Acoustic indices as proxies for biodiversity: a meta- analysis," Biological Reviews, 2022. wiley.com

193. S. Qiu, A. Yang, and H. Zeng, "Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook," PLoS Computational Biology, 2023. plos.org

194. LL Cardoso, FBS Freire, and DM Daloso, "Plant metabolic networks under stress: a multi-species/stress condition meta-analysis," Journal of Soil Science and Plant, vol. 2023, Springer. researchgate.net

195. Y. Li, Z. Li, C. Xu, and Q. Wang, "WRKYs as regulatory hubs of secondary metabolic network: diverse inducers and distinct responses," *Plant Communications*, 2025. cell.com

196. J. Montaño López, L. Duran, and J. L. Avalos, "Physiological limitations and opportunities in microbial metabolic engineering," *Nature Reviews Microbiology*, 2022. nsf.gov

197. M. J. Volk, V. G. Tran, S. I. Tan, S. Mishra, Z. Fatma, "Metabolic engineering: methodologies and applications," *Chemical Engineering*, vol. 2022, ACS Publications. google.com

198. M. Ream and K. L. J. Prather, "Engineered autonomous dynamic regulation of metabolic flux," *Nature Reviews Bioengineering*, 2024. [HTML]

199. S. Selma, N. Ntelkis, T. H. Nguyen, "Engineering the plant metabolic system by exploiting metabolic regulation," *The Plant...*, 2023. wiley.com

200. Q. Ding and L. Liu, "Reprogramming cellular metabolism to increase the efficiency of microbial cell factories," *Critical Reviews in Biotechnology*, 2024. [HTML]

201. T. Rout, A. Mohapatra, and M. Kar, "A systematic review of graph-based explorations of PPI networks: methods, resources, and best practices," *Network Modeling Analysis in Health Informatics and Bioinformatics*, vol. 2024, Springer. researchgate.net

202. M. Milano, C. Zucco, M. Settino, and M. Cannataro, "An extensive assessment of network embedding in PPI network alignment," *Entropy*, 2022. mdpi.com

203. X. Li, B. Cao, J. Wang, X. Meng, S. Wang, "Predicting mutation-disease associations through protein interactions via deep learning," *IEEE Journal of ...*, 2025. biorxiv.org

204. L. M. Breckels, C. Hutchings, K. D. Ingole, S. Kim, *et al.*, "Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations," **Cell Chemical Biology**, 2024. cell.com

205. A. Boahen, D. Hu, M. J. Adams, P. K. Nicholls, "Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs," *Frontiers in ...*, 2023. frontiersin.org

206. A. Attiq and S. Afzal, "Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment," *Frontiers in Pharmacology*, 2023. frontiersin.org

207. A. Leunig, M. Ganeselli, S. J. Russo, "Connection and communication between the nervous and immune systems," *Nature Reviews*, 2025. [HTML]

208. S. Chatterjee and P. C. Sil, "ROS-influenced regulatory cross-talk with wnt signaling pathway during perinatal development," *Frontiers in Molecular Biosciences*, 2022. frontiersin.org

209. D. J. Yang, G. W. Gong, J. F. Song, J. J. Chen, and S. Wang, "Ferroptosis-mediated osteoclast-osteoblast crosstalk: Signaling pathways governing bone remodeling in osteoporosis," **Journal of Orthopaedic ...**, 2025. springer.com

210. R. L. Abhijith, A. U. Akash, A. P. Kumar, *et al.*, "Insect-microbe Interactions: Mutualism, Pathogenesis and Symbiosis," **Entomology Redefined**, 2024. researchgate.net

211. Q. Dai, J. Ding, X. Cui, Y. Zhu, H. Chen, *et al.*, "Beyond bacteria: Reconstructing microorganism connections and deciphering the predicted mutualisms in mammalian gut metagenomes," **Ecology and Evolution**, vol. 2023, Wiley Online Library. wiley.com

212. C. L. Wiesmann, N. R. Wang, Y. Zhang, *et al.*, "Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals," *FEMS Microbiology*, 2023. nih.gov

213. U. Picciotti, V. Araujo Dalbon, A. Ciancio, M. Colagiero, "Ectomosphere: insects and microorganism interactions," *Microorganisms*, vol. 11, no. 3, 2023. mdpi.com

214. P. K. Singh, "MICROBIAL GROWTH AND PHYSIOLOGY: A COMPREHENSIVE REVIEW," CONCEPTS & APPLICATIONS, . wisdompress.co.in

215. V. M. Oliveira, F. D. Andreote, P. C. Cortelo, *et al.*, "Microorganisms: the secret agents of the biosphere, and their key roles in biotechnology," *Biota*, 2022. scielo.br

216. A. L. T. Benatti and M. L. T. M. Polizeli, "Lignocellulolytic biocatalysts: the main players involved in multiple biotechnological processes for biomass valorization," *Microorganisms*, 2023. mdpi.com

217. NS Akimbekov, I. Digel, KT Tastambek, and AK Marat, "Biotechnology of microorganisms from coal environments: from environmental remediation to energy production," **Biology**, vol. 2022, 2022. mdpi.com

218. N. M. Mesbah, "Industrial biotechnology based on enzymes from extreme environments," *Frontiers in Bioengineering and Biotechnology*, 2022. frontiersin.org

219. M. Rawat, M. Chauhan, and A. Pandey, "Extremophiles and their expanding biotechnological applications," *Archives of Microbiology*, 2024. [HTML]

220. F. Atif, N. Maqsood, W. Ali, W. Ali, and M. Irfan, "Extremophiles and their enzymatic diversity and biotechnological potential," *Systems Microbiology and ...*, 2024. [HTML]

221. S. Arbab, H. Ullah, M. I. U. Khan, "Diversity and distribution of thermophilic microorganisms and their applications in biotechnology," **Journal of Basic Microbiology**, vol. 2022, Wiley Online Library. researchgate.net

222. S. E. Winter and A. J. Bäumler, "Gut dysbiosis: Ecological causes and causative effects on human disease," **Proceedings of the National Academy of Sciences**, 2023. pnas.org

223. H. Mostafavi Abdolmaleky and J. R. Zhou, "Gut microbiota dysbiosis, oxidative stress, inflammation, and epigenetic alterations in metabolic diseases," *Antioxidants*, 2024. mdpi.com

224. S. S. Pandit, P. Meganathan, and H. Vedagiri, "Harmonizing gut microbiota dysbiosis: Unveiling the influence of diet and lifestyle interventions," *Metabolism Open*, 2025. sciencedirect.com

225. N. Kurhaluk and P. Kamiński, "Role of Gut Microbiota in Modulating Oxidative Stress Induced by Environmental Factors," *Cellular Physiology & Biochemistry*, 2025. researchgate.net

226. K. Gupta, P. Bardhan, D. Saikia, and M. A. Rather, "Microbial fermentation: Basic fundamentals and its dynamic prospect in various industrial applications," **Industrial Microbiology**, vol. 2022, Springer. researchgate.net

227. W. Sun, M. H. Shahrajabian, and M. Lin, "Research progress of fermented functional foods and protein factory-microbial fermentation technology," *Fermentation*, 2022. mdpi.com

228. D. Ağagündüz, B. Yılmaz, T. Koçak, and H. B. Altıntaş Başar, "Novel candidate microorganisms for fermentation technology: From potential benefits to safety issues," *Foods*, vol. 11, no. 6, 2022. mdpi.com

229. L. Yafetto, "Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis," *Heliyon*, 2022. cell.com

230. V. Spiridonov, M. Ćurić, and N. Novkovski, "Biosphere: Ecosystem Diversity and Environmental Change," in **Atmospheric Perspectives: Unveiling ...**, Springer, 2025. [HTML]

231. J. C. Svenning, R. Buitenwerf, and E. Le Roux, "Trophic rewilding as a restoration approach under emerging novel biosphere conditions," *Current Biology*, 2024. cell.com

232. K. E. Giller, E. K. James, J. Ardley, and M. J. Unkovich, "Science losing its way: examples from the realm of microbial N₂-fixation

in cereals and other non-legumes," Plant and soil, 2025. springer.com

233. A. N. T. Do, H. D. Tran, M. Ashley, and A. T. Nguyen, "Monitoring landscape fragmentation and aboveground biomass estimation in Can Gio Mangrove Biosphere Reserve over the past 20 years," Ecological Informatics, 2022. [HTML]
234. T. D. Sharkey, "The end game (s) of photosynthetic carbon metabolism," Plant Physiology, 2024. oup.com
235. P. G. Kroth and Y. Matsuda, "Carbohydrate metabolism," The molecular life of diatoms, 2022. researchgate.net
236. M.D. Hartman, B.E. Rojas, C.M. Figueroa, "... to convert atmospheric inorganic CO₂ to organic molecules," in *Handbook of ...*, 2024. [HTML]
237. J. Gudelos, "Powering the Future: Unleashing the Secrets of Photosynthesis," National Library of the Philippines, 2024. ssrn.com
238. J. S. Amthor, "ATP yield of plant respiration: potential, actual and unknown," Annals of Botany, 2023. nih.gov
239. S. Aliyari Rad, Z. Dehghanian, B. Asgari Lajayer, "Mitochondrial respiration and energy production under some abiotic stresses," *Journal of Plant Growth*, vol. 2022, Springer. [HTML]
240. D. Huang, G. Jing, and S. Zhu, "Regulation of mitochondrial respiration by hydrogen sulfide," Antioxidants, 2023. mdpi.com
241. A. A. Alimova, V. V. Sitnikov, D. I. Pogorelov, "High doses of pesticides induce mtDNA damage in intact mitochondria of potato in vitro and do not impact on mtDNA integrity of mitochondria of shoots and ...," *International Journal of ...*, 2022. mdpi.com
242. V. Singh, "Biogeochemical cycles," Textbook of environment and ecology, 2024. [HTML]

243. D. Ranaweera and U. Kumarasinghe, "Biogeochemistry: essential link between geosphere and biosphere," in *Medical geology: en ...*, Wiley Online Library, 2023. [HTML]

244. A. K. Giri, S. K. Mallik, P. A. Ganie, "Biogeochemical Cycles and Their Significance in Nutrient Recycling," in *Handbook of Aquatic ...*, 2024. [HTML]

245. S. Yousuf, N. Naqash, and R. Singh, "Nutrient cycling: An approach for environmental sustainability," in *Microbiology: Advanced Research*, 2022. [HTML]

246. J. R. Guerrero Ramírez and L. A. Ibarra Muñoz, "Microbiology and biochemistry of pesticides biodegradation," *International Journal of ...*, 2023. mdpi.com

247. A. Bher, P. C. Mayekar, R. A. Auras, "Biodegradation of biodegradable polymers in mesophilic aerobic environments," *International Journal of ...*, vol. XX, no. YY, pp. ZZ-ZZ, 2022. mdpi.com

248. R. R. A. Silva, C. S. Marques, T. R. Arruda, and S. C. Teixeira, "Biodegradation of polymers: stages, measurement, standards and prospects," *Macromol*, 2023. mdpi.com

249. V. Singh, "The environment and its components," Textbook of Environment and Ecology, 2024. researchgate.net

250. ZY Tian, M. Yousuf, ZM Wang, "Chemical and biological processes that occur within and among these domains," in *Chemistry*, 2025. [HTML]

251. K. Gholamizadeh, E. Zarei, M. Yazdi, and M. T. Amin, "Data-driven approaches for accident analysis in sociochemical systems," in *Safety Causation Analysis in ...*, Springer, 2024. [HTML]

252. R. P. R. Nogueira, R. Melicio, D. Valério, and L. F. F. M. Santos, "Learning methods and predictive modeling to identify failure by human factors in the aviation industry," Applied Sciences, 2023. mdpi.com

253. A. A. Munoz-Macho and M. J. Domínguez-Morales, "Performance and healthcare analysis in elite sports teams using artificial intelligence: a scoping review," in *Sports and Active Health*, 2024. frontiersin.org

254. S. Niu, Z. Dong, L. Li, and C. Ng, "Identifying long-term health risks associated with environmental chemical incidents," Journal of Hazardous Materials, 2024. [HTML]

255. T. Lang, A. M. Lipp, and C. Wechselberger, "Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies," Journal of Xenobiotics, 2025. mdpi.com

256. K. Sharma and P. Kumar, "Environmental threats posed by xenobiotics," Bioremediation of Emerging Contaminants from Soils, 2024. [HTML]

257. R. Miglani, N. Parveen, A. Kumar, M. A. Ansari, S. Khanna, "Degradation of xenobiotic pollutants: an environmentally sustainable approach," Metabolites, vol. 12, no. 5, 2022. mdpi.com

258. S. M. Abdallah, R. E. Muhammed, R. E. Mohamed, "Assessment of biochemical biomarkers and environmental stress indicators in some freshwater fish," Environmental ..., vol. 2024, Springer. springer.com

259. P. Velusamy, C. H. Su, P. Ramasamy, V. Arun, "Volatile organic compounds as potential biomarkers for noninvasive disease detection by nanosensors: a comprehensive review," *Critical Reviews in ...*, 2023. [HTML]

260. C. T. Harrington, N. Al Hafid, and K. A. Waters, "Butyrylcholinesterase is a potential biomarker for sudden infant death syndrome," EBioMedicine, 2022. thelancet.com

261. X. Guo, C. Huang, J. Xu, H. Xu, L. Liu, H. Zhao, "Gut microbiota is a potential biomarker in inflammatory bowel disease," *Frontiers in ...*, 2022. frontiersin.org

262. M. Marchetti and S. Faggiano, "Enzyme replacement therapy for genetic disorders associated with enzyme deficiency," *Current Medicinal Chemistry*, vol. 2022. unipr.it

263. G. Huang, W. Li, Y. Zhong, W. Liao *et al.*, "Mendelian randomization to evaluate the causal relationship between liver enzymes and the risk of six specific bone and joint-related diseases," Frontiers in Immunology, 2023. frontiersin.org

264. J. Zschocke, P. H. Byers, and A. O. M. Wilkie, "Mendelian inheritance revisited: dominance and recessiveness in medical genetics," Nature Reviews Genetics, 2023. i-med.ac.at

265. T. L. Apgar and C. R. Sanders, "Compendium of causative genes and their encoded proteins for common monogenic disorders," Protein Science, 2022. nih.gov

266. N. Chaudhary and G. Kumar, "Mutagenic radiations: X-rays, ionizing particles, and ultraviolet," in *... and genetics in plant mutation breeding*, 2023. [HTML]

267. K. Goyal, H. Goel, P. Baranwal, A. Dixit, F. Khan, "Unravelling the molecular mechanism of mutagenic factors impacting human health," in *Science and Pollution*, Springer, 2022. [HTML]

268. K. Apte and S. Bhide, "Basics of radiation," Advanced radiation shielding materials, 2024. [HTML]

269. I. Tein, "Recent advances in neurometabolic diseases: The genetic role in the modern era," Epilepsy & Behavior, 2023. [HTML]

270. H. Cao, E. F. Oghenemaro, A. Latypova, *et al.*, "Advancing clinical biochemistry: addressing gaps and driving future innovations," Frontiers in ..., 2025. frontiersin.org

271. UD Senarathne, NLR Indika, A Jezela-Stanek, E Ciara, "Biochemical, genetic and clinical diagnostic approaches to autism-associated inherited metabolic disorders," Genes, vol. 2023, pp. 1-10, 2023. mdpi.com

272. S. L. Rosenblum, "Inflammation, dysregulated iron metabolism, and cardiovascular disease," Frontiers in Aging, 2023. frontiersin.org

273. R. Akbarzadeh, J. Y. Humrich, T. Németh, *et al.*, "Innate immune dysregulation: a driving force of autoimmunity and chronic inflammation," *Frontiers in ...*, 2025. frontiersin.org

274. A. Long, A. Kleiner, and R. J. Looney, "Immune dysregulation," *Journal of Allergy and Clinical Immunology*, 2023. sciencedirect.com

275. F. Petruso, A. E. Giff, B. A. Milano, M. M. De Rossi, "Inflammation and emotion regulation: A narrative review of evidence and mechanisms in emotion dysregulation disorders," *Neuronal*, vol. 2023. portlandpress.com

276. F. Voiță-Mekereș, F. Manole, I. B. Voiță, "The Role of Food Biochemistry in the Control and Prevention of Nervous System Diseases," *Journal of Biochemical Technology*, vol. 2023. jbiochemtech.com

277. B. K. Beata, J. Wojciech, K. Johannes, and L. Piotr, "Alzheimer's disease-Biochemical and psychological background for diagnosis and treatment," **International Journal of ...**, 2023. mdpi.com

278. G. Walsh, "Biopharmaceuticals: biochemistry and biotechnology," 2026. sut.ac.th

279. B. An, Y. Wang, Y. Huang, X. Wang, Y. Liu, D. Xun, "Engineered living materials for sustainability," **Chemical**, vol. 2022, ACS Publications. osti.gov

280. M. J. Moore, R. P. Tan, N. Yang, J. Rnjak-Kovacina, *et al.*, "Bioengineering artificial blood vessels from natural materials," **Trends in ...**, 2022. kinampark.com

281. X. Liu, M. E. Inda, Y. Lai, T. K. Lu *et al.*, "Engineered living hydrogels," *Advanced Materials*, 2022. wiley.com

282. A. P. Liu, E. A. Appel, P. D. Ashby, B. M. Baker, and E. Franco, "The living interface between synthetic biology and biomaterial design," **Nature Materials**, vol. 21, no. 1, pp. 1-12, 2022. nih.gov

283. N. Stalin, N. Sharma, N. Sharma, and Y. K. Ahlawat, "Fundamentals of metabolic engineering," in *... through Metabolic ...*, Elsevier, 2026. [HTML]

284. H. Meta, S. Somaly, and I. Sokra, "Engineering living systems for sustainability: synthetic biology approaches in green bioproduction," Journal of Agriculture and Technology, 2026. researchgate.net

285. A. I. Hassan and H. M. Saleh, "Production of amino acids and nucleic acids from genetically engineered microbial cells and their relevance to biodegradation," Green Energy and Environmental, 2023. intechopen.com

286. H. Kulshrestha, "BIOPROCESSING AND FERMENTATION: MODERN TECHNOLOGY," BIOPROCESS ENGINEERING, . wisdompress.co.in

287. S. Mitra and G. S. Murthy, "Bioreactor control systems in the biopharmaceutical industry: a critical perspective," Systems microbiology and biomanufacturing, 2022. springer.com

288. K. Isoko, J. L. Cordiner, Z. Kis, and P. Z. Moghadam, "Bioprocessing 4.0: a pragmatic review and future perspectives," Digital Discovery, 2024. rsc.org

289. IM Idriss, D. Baba, F. Kareem, A. S. Kolo, "Bioprocessing," in Food and Bioprocessing, 2025, Springer. [HTML]

290. J. S. Aranda-Barradas, C. Guerrero-Barajas, and A. Ordaz, "Addressing Challenges in Large-Scale Bioprocess Simulations: A Circular Economy Approach Using SuperPro Designer," Processes, 2025. mdpi.com

291. E. A. de Lima, F. Mandelli, D. Kolling, J. M. Souza, "... of an economically competitive *Trichoderma*-based platform for enzyme production: bioprocess optimization, pilot plant scale-up, techno-economic analysis and life ...," Bioresource, vol. 2022, Elsevier. [HTML]

292. S. Dhagat and S. E. Jujjavarapu, "Economics of Fermentation Processes," in **Recent Advances in Bioprocess Engineering**, Springer, 2024. [HTML]

293. J. Wang, C. Ranscombe, and B. Eisenbart, "Prototyping in smart product design: Investigating prototyping tools to support communication in the early stage smart product development," *Journal of Design Creativity*, vol. 2023, Taylor & Francis. tandfonline.com

294. P. H. Leocadio, "NAVIGATING PROTOTYPING EXCELLENCE: A COMPREHENSIVE FRAMEWORK INTEGRATING TECHNOLOGICAL FEASIBILITY, MARKET RESEARCH ...," *International Journal of Education (IJE)*, 2024. flyccs.com

295. M. Majka, "Understanding the Discover Phase in the Product Management Life Cycle," researchgate.net, . researchgate.net

296. M. Das and M. C. Yang, "Assessing early stage design sketches and reflections on prototyping," *Journal of Mechanical Design*, 2022. mit.edu

297. A. V. dos Santos Borges, B. B. Andrade, J. S. Santana, "Biopolymers synthesized by microalgae grown in wastewater: A technological survey," *BioEnergy*, 2024. [HTML]

298. B. S. Saharan, N. Kamal, P. Badoni, *et al.*, "Biopolymer and polymer precursor production by microorganisms: applications and future prospects," **Journal of Chemical**, vol. 2024, Wiley Online Library. academia.edu

299. M. Y. D. Alazaiza, A. Albahnasawi, M. Eyyaz, T. Al Maskari, "An overview of green bioprocessing of algae-derived biochar and biopolymers: synthesis, preparation, and potential applications," *Energies*, 2023. mdpi.com

300. X. Luo, Y. You, M. Zhong, L. Zhao, Y. Liu, R. Qiu, "Green synthesis of manganese–cobalt–tungsten composite oxides for degradation of doxycycline via efficient activation of peroxymonosulfate," **Journal of Hazardous Materials**, vol. 423, pp. 127-135, 2022. [HTML]

301. S. Wu, J. Zhang, A. Xia, Y. Huang, X. Zhu, and X. Zhu, "Microalgae cultivation for antibiotic oxytetracycline wastewater treatment," **Environmental**, vol. 2022, Elsevier. [HTML]

302. S. Kokilavani, I. A. Alaraidh, M. K. Okla, P. Chandran, "Efficient photocatalytic degradation of methyl orange and malachite green by Ag3PO4 decorated BiOBr nanoflower under visible light: Performance evaluation," **Journal of Alloys and Compounds**, 2022. [HTML]

303. M. Saleem, "Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source," *Heliyon*, 2022. cell.com

304. T. Kalak, "Potential use of industrial biomass waste as a sustainable energy source in the future," *Energies*, 2023. mdpi.com

305. D. T. Troiano, T. Hofmann, S. Brethauer, "Toward optimal use of biomass as carbon source for chemical bioproduction," *Current Opinion in ...*, vol. 2023, Elsevier. [HTML]

306. T. Khandaker, T. Islam, A. Nandi, and M. A. A. M. Anik, "Biomass-derived carbon materials for sustainable energy applications: a comprehensive review," **Sustainable Energy & ...**, 2025. [HTML]

307. H. Xie, R. Zhao, C. Liu, Y. Wu, X. Duan, J. Hu, F. Yang, "Dynamic changes in volatile flavor compounds, amino acids, organic acids, and soluble sugars in lemon juice vesicles during freeze-drying and hot-air drying," *Foods*, vol. 11, no. 4, 2022. mdpi.com

308. P. Li, Y. Jia, D. Cai, X. Wang, J. Liu, R. Zhu, Z. Wang, and Y. He, "Study on the relationship between flavor components and quality of ice wine during freezing and brewing of 'beibinghong' grapes," *Food Chemistry: X*, vol. 2023, Elsevier. scencedirect.com

309. A. Ikegaya and R. Oishi, "Differences in analytical methods affect the analytical values of soluble solids, free sugar, and organic acid content of strawberries," *Lwt*, 2024. scencedirect.com

310. L. Wang, W. Zhou, C. Liu, P. Chen *et al.*, "Study on the accumulation pattern of anthocyanins, sugars and organic acids in medicinal *Vitis vinifera* 'SuoSuo'during ripening," *Food Chemistry*, 2024. xjau.edu.cn

311. W. Mo, X. Q. Tan, and W. J. Ong, "Prospective Life Cycle Assessment Bridging Biochemical, Thermochemical, and Electrochemical CO₂ Reduction toward Sustainable Ethanol Synthesis," *ACS Sustainable Chemistry & Engineering*, vol. 2023. [HTML]

312. C. Liang and U. R. Gracida-Alvarez, "Life-cycle assessment of biochemicals with clear near-term market potential," *ACS Sustainable Chem. Eng.*, vol. 2023. acs.org

313. K. Navare, W. Arts, G. Faraca, and G. Van den Bossche, "Environmental impact assessment of cascading use of wood in bio-fuels and bio-chemicals," *Resources*, vol. 2022, Elsevier. kuleuven.be

314. K. Wowra, E. Hegel, A. Scharf, A. Grünberger, "Estimating environmental impacts of early-stage bioprocesses," *Trends in ...*, vol. 2023. [HTML]