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Abstract

Prevention of immune and chronic diseases represents an important
public health objective. The human microbiome directly influences
immune system development, and its modulation represents a
promising avenue for disease prevention. Emerging artificial
intelligence  approaches facilitate large-scale exploration of
microbiome-disease associations and generation of novel hypotheses.
Prediction models based on longitudinal population-level data enable
timely detection and stratification of disease risk. Evidence-based
strategies are suggested for prevention of allergic diseases in
childhood, modulation of vaccine responses, risk reduction for
metabolic disorders and diabetes during adulthood, and enhancement
of immune tolerance.

A population-based cohort study with periodic sampling can
support longitudinal modelling of the microbiota-disease relationship
and capture disease-specific alterations on a physiological timescale.
For immune disorders, microbiome-targeted interventions may focus
on the early-life period to ensure safety and harness a potentially
greater effect on healthy immune development. Candida, Clostridia,
and Atopobium are associated with the risk of developing asthma and
inhalant allergies in childhood. Two interrelated hypotheses-reduced
induced tolerance in the presence of microbial pathogens and a lack of
consistent immune challenge during early-life development-are central
to this expanded view of allergic disease aetiology.
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Chapter - 1

The Human Microbiome and Its Role in Health and
Disease

The interplay between the host and their microbiome is understood as
microbiome-hoste interaction M. When a mutualism is established, the
responsible microbes are seen as commensals, acting synergistically
with the host immune system. It is reasonable to assume that the host
interacts closely with all the associated microbiome species, as
members are situated at mucosal surfaces that represent the first contact
point for invading pathogens. Because of this, members of the
microbiota can directly stimulate essential innate immune pathways.
The host adapts to its microbiome by food exposure, leading to
microbiome evolution into benign state revealing that human diet
shapes their microbiome and thereby influences the innate immune
system during pen and postnatal periods. Pattern recognition by innate
immune cells stimulates the expression of barrier function associated
proteins, such as the synthesis of mucus, mucins, secretory
immunoglobin A (slgA), cathelicidin, beta-defensins, lysozyme A,
psoriasin and blood anti-microbial peptides. It also promotes the
epithelial production of secreted small anti-microbial peptides
generated by Paneth cells, such as the alpha-defensins relied upon to
maintain intestinal health.

A multi-omics analysis on how the gut microbiota dictates innate
immune development and function, revealing that microbiota
composition (i.e. abundance of Lactobacillus, Oscillibacter, or
Coprococcus) can determine gut mucosal layer thickness and its
glycosylation pattern via controlling the transcriptional activation of
MUC?2. The Gram-positive bacteria Micrococcus luteus and the Gram-
negative bacteria Escherichia coli, are presented as probiotics able to
modulate growth rates of Burkholderia cepacia complex species,
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enhancing their slgA-inducing potential. Over an experimental
timeline, pathogen-free mice exposed to an early-life supply of M.
luteus developed a sIgA response against this bacterium 2341,

Composition and diversity of the human microbiome

The human microbiome encompasses a wide variety of prokaryotic
and eukaryotic microorganisms, comprising bacteria, viruses, archaea,
fungi, and protozoa. Beyond the genetic functions of the microbiome,
its taxonomic and functional composition are also determinants of
health. A wealth of disease models and human cohorts have shown that
reduced richness and shifts in composition are associated with diverse
immunological and metabolic diseases, cancer, or infections. These
associations potentially reflect cause-effect relationships or risk
associations suggesting microbial signatures for early diagnosis. Such
signatures can be generated from high-dimensional microbiome data
sets through various approaches, but deep learning represents an
efficient way of training classifiers with increasing performance and
enabling the identification of microbiome-disease associations beyond
a supervised fashion. Other advanced approaches have also put forward
disease signatures based on biological significance for disease risk
assessment, detection, stratification, or prediction across cohorts and
populations. In addition, the identification of associations between the
microbiome and specific immunisation responses, and the
incorporation of metagenomic data in prediction experiments for
childhood allergies and asthma correlate well with children’s health-
disease trajectory studies.

Microbiome studies typically focus on the taxonomic diversity and
composition of the microbiota at a given time point, giving less priority
to longitudinal data sets that might enable the modelling of the
dynamics of dyshiosis development, duration, and recovery related to
infection incidence. Gaps in such temporal analyses can partly be filled
using machine learning methods with individual microbiome profiles
at different time points, resulting in an integrative model that predicts
future alterations of disease- and health-associated microbiome states
while accounting for time as an important factor and helping to detect
specific disease signals. Despite the recurrent signals linking
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microbiome composition and health, validation of the identified
signatures remains paramount, especially if they are considered
candidates for future clinical routine or used for personalized
prevention initiatives. Combinations of machine learning with
literature mining can play a key role in uncovering overarching
principles regarding the stability of microbial signatures across diverse
health-related conditions or the reliability of dietary-microbiome
relationships 567 &1,

Microbiome development across the human lifespan

In microbiome research, the human life cycle is typically divided
into the following stages: prenatal, infant, early childhood, late
childhood, adolescence, adulthood, and aging. Despite being a
continuous process, it is often simplified into discrete stages that are
each characterized by the dynamics of key environmental factors.
These include mode of delivery, feeding methods, introduction of
dietary solids, weaning practices, transition from childhood to puberty,
sexual maturation and adulthood, and old age. Such an approach aids
reference dataset design and construction of Life Cycle Models for
Time-Series Analysis.

The microbiome of a healthy adult is fairly stable over time,
although changes may occur in response to stressors, including pain,
anxiety, gastrointestinal infections, and antibiotic administration.
However, an assessment of microbiome stability must also consider the
temporal scale of the investigation. A study of younger adults (aged
19-30 years) found that, despite being stable over time, community
composition could vary significantly during a routine sampling period
of three weeks. The concept of microbiome stability must also account
for inter-individual variability. Indeed, while the microbiomes of two
healthy (non-diabetic) individuals may differ substantially, they may
respond similarly in terms of beta diversity to environmental
perturbations, despite the absolute abundance of the differing
communities remaining unaltered [ 1011121,

Host-microbiome interactions

Together, the microbiome and the organism interact through
various signaling pathways. The microbiome modifies the training of
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the immune system, while also offering supplementary metabolic
activity. The production of a variety of nutrients, stability against
pathogen colonization, and metabolism of xenobiotics are both
facilitated by the gut microbiome. Through factors that modify
mucositis and intestinal permeability, and thus the systemic
translocation of substances produced by the microbiota, the microbiota
likewise affects the blood-brain barrier. A reduction or deficiency in
diversity and the abundance of the main phyla of the gut microbiota
during aging lead to alterations in these functions and pathways.

The microbiota play significant roles in the development and
maturation of the immune system through three different processes:

i) Education of the innate immune system.
ii) Education of the adaptive immune system.
iii) Training of thymic T cells in developing immune tolerance.

The gut microbiota can differ according to climatic zones and
geographical areas. Some of these alterations may lead to disease.
Chronic inflammatory conditions, as observed in obesity and type 2
diabetes, are associated with microbiota inflammation-induced
dysregulation (13 1415 16]

Dysbiosis and disease associations

Evidence from metagenomic and metatranscriptomic studies
indicates that the microbiome is a significant risk factor for and/or
contributes to the pathogenesis of numerous immune and chronic
diseases: in particular, type 1 and type 2 diabetes, allergic diseases,
inflammatory bowel disease, neurological disorders (such as multiple
sclerosis), cardiovascular diseases, autoimmune diseases, cancer,
obesity, metabolic syndrome, non-alcoholic fatty liver disease, non-
alcoholic steatohepatitis, and chronic kidney disease. Changes in
microbial diversity appear to predispose individuals to the
development of some immune and chronic diseases; in contrast, other
diseases appear to correlate with the abundance or depletion of specific
taxa within the microbiome, suggesting a more direct role in their
pathogenesis.
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Nonetheless, identifying association patterns is only the first step
in understanding the relations between the microbiome and disease.
Associations should ideally be established over time and should
include both microbiome data and corresponding disease samples from
the same cohort. In addition, immune and chronic disease-associated
changes in the microbiome still need to be probed experimentally to
establish causation. Therefore, the data available to support claims of

causation may still be limited for many immune and chronic diseases
[17, 18,19, 20]

Microbiome as a therapeutic target

The potential of the microbiome in therapy is vast. Alterations in
microbiome diversity and/or composition (dysbiosis) are linked with
many diseases, including metabolic syndrome, obesity, diabetes,
inflammatory bowel diseases, colorectal cancer, allergies, and asthma.
However, convincing evidence for causal roles-beyond association-
remains scarce. Al can help address this knowledge gap and specify the
conditions under which the microbiome may serve as a therapeutic
target or biomarker. Three main strategies are possible:

1) Modulation of dysbiosis more broadly.

2) Restoration of specific, prioritized, pre- or postdysbiotic
microbiomes.

3) Development of deleterious dysbiosis (abnormal microbiota)
or disease-associated microbiome dyshiosis in animal models
(mice, nonhuman primates) or human cohorts and
identification of the microbiome signature. The aim of these
approaches is to provide biobridging.

Recent studies have explored the design of predictive Al models of
chronic diseases based on the microbiome and also the engineering of
the microbiome for healthy aging. Al has facilitated the specification
of dietary patterns associated with common food groups that modulate
the microbiome and contribute to disease prevention. There is also
emerging interest in using biosensors and wearables to facilitate daily
health monitoring. Of particular importance, the timing of
interventions during the critical windows of immune system
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development or remodeling for early-life modulation or tolerance
induction (i.e., delivery of potential allergy-resolving microbes to at-
risk populations) has become increasingly acknowledged. Moreover,
restoration of disease-specific microbiota or precise modulation of
normal healthy ecosystems also holds great promise [2% 22 23 24],
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Chapter - 2

Immune System-Microbiome Interactions

The innate immune system uses pattern recognition receptors (PRRs)
to detect danger signals in the gut and generates immune and detection
signals affecting local microbiota composition and function. PRR
signaling is critical for maintaining intestinal barrier integrity. The
microbiota produces beneficial antimicrobial peptides (AMPS) that
help regulate intestinal homeostasis but are reduced in conditions
involving high intestinal permeability or microbiome dysbiosis. The
microbiome is also involved in adaptive immunity education and
tolerance. Diversity and composition of colonic Tregs correspond to
specific bacteria. Sources of microbial signals shaping immune
education encompass the gut microbiome, lactate, serum, and cultured
gut-resident bacteria. Dysbiosis can thus alter immune signaling and
tolerance pathways, potentially leading to chronic inflammation,
increased pathology risk, and decreased vaccine effects.
Autoimmunity, allergy, and autism are examples of altered tolerance-
associated conditions.

The microbiome influences the production of various metabolites
that play crucial roles in the immune system. Butyrate modulates
macrophage functions, and alters the number of T- and B-cell
populations in the kidney and spleen. Propionate stimulates CCL20
production in human intestinal epithelial cells. Tryptophan metabolites
affect the balance of T- and B-cell subtypes through the AHR and IDO
pathways, and enhance macrophage polarization toward M2. Dysbiosis
alters pathways of tryptophan, butyrate, and propionate metabolism
and receptor signals, and can modulate various IFN-y- and IL-12-
related inflammatory pathways. Th17/Treg imbalances promote
multiple autoimmune disorders, but this imbalance can be corrected by
Microbacterium sp. 2C4. Reduced Treg-inducing signals are associated
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with elevated IL-17A in patients with systemic autoimmunity.
Dysbiosis may alter immune-associated pathways in COVID-19
patients, and patients with severe disease show a significant
inflammatory signature involving Th17 cells [25 26.27. 28],

Innate immune modulation by the microbiome

The first line of defense, the innate immune system prevents
pathogen invasion and controls infection severity. Composed of
physical barriers (e.g., skin, mucosal membranes), immune cells (e.g.,
macrophages, dendritic cells, neutrophils), soluble mediators (e.g.,
cytokines, chemokines, proteins), and lipid membranes, innate
immunity initiates immune responses through pattern recognition of
pathogens, regulation of adaptive immunity, and infection control. The
human microbiome contributes to all aspects of innate immune
function.

The skin and epithelial surfaces of the gut, lung, and other tissues
serve as physical barriers against microbiota and pathogen invasion.
Composed of epithelial cells and the underlying extracellular matrix,
these surfaces are regularly exposed to commensals. Microbial
metabolites and certain pathogens induce expression of tight junction
proteins (e.g., claudin, occludin) that promote tight junction formation
across epithelial layers. The memory component of innate immunity is
mediated by the education of trained innate immune cells, which
respond more rapidly and vigorously to secondary infections. Trained
immunity is believed to be mediated in part by metabolites (e.g.,
butyrate) produced during microbiome fermentation of indigestible
carbohydrates (e.g., dietary fiber) in the gut [2% 30.31.32],

Adaptive immune education and tolerance

The microbiome modulates not only the development of innate
immune responses but also educates the adaptive immune system and
promotes tolerance to food and environmental antigens. Underlying
mechanisms include the production of microbial-derived metabolites
and direct stimulation of cognate receptors, both involved in shaping T
and B cell responses. Dysbiosis affects the tolerance-inducing
pathways of pregnancy and milk composition, disturbing the
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equilibrium  between pro- and anti-inflammatory responses.
Microbiome-driven processes are critical for optimizing vaccine
responses and preventing autoimmune diseases.

Mature, functional T cells and immunoglobulin-producing B cells
are necessary for the adaptive immune response. Segmented
filamentous bacteria (SFB) are among the few characterized
commensal microbes able to induce Th1l7 cell differentiation and
promote antibody class switching in IgA+ and IgG+ B cells. SFB
colonization increases the susceptibility to experimental autoimmune
encephalomyelitis (EAE), an animal model for multiple sclerosis (MS).
While Th17 cells contribute to mucosal defense and host protection, a
dysregulated or exaggerated Th17 response is a hallmark of various
autoimmune and inflammatory disorders. Mucosal IgA production
contributes to immune exclusion and neutralization of invading
pathogens. The microbiota directs the education of intestinal IgA-
producing B cells by regulating TGF-f and retinoic acid-producing
dendritic cells. Mucosal infection with pathogens such as Helicobacter
pylori or cytomegalovirus mediates a fecal IgA response and shapes
the composition of the IgA-coated fecal microbiota [33: 34 35. 361,

Microbial metabolites and immune signaling

Microbial metabolites produced by members of the human
microbiome can directly signal cells involved in the host immune
response. Representative metabolites include butyrate, propionate, and
tryptophan metabolites such as indole, indole-3-acetic acid (1AA),
indole-3-ethanol, and butyrylcoenzyme a (butyryl-CoA). Activation of
targets such as immunoglobulin A (IgA) secreting B cells, T helper-17
(Th17) cells, forkhead box P3 (FoxP3+) regulatory T cells, dendritic
cells, toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), G
protein-coupled receptor 41 (GPR41), G protein-coupled receptor 43
(GPR43), hydroxycarboxylic acid receptor 1 (HCA) and AhR by these
metabolites has an important role in modulating both innate and
adaptive immunity. Butyrate promotes the differentiation of Th17 cells
as well as the production of IL-10, IFN-y, and IL-4 by T cells. In Gpr41
rats, the secretion of IgA decreased dramatically and Lactobacillus
reuteri populations were reduced in the intestines. Propionate is
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involved in the differentiation of naive T cells into Thl or Th2 cells by
upregulating the expression of T-bet or GATAS, respectively.

Changes in microbial flora composition and diversity are closely
related to the occurrence of autoimmune diseases, and the imbalance
of intestinal microorganisms can lead to alteration of the composition
and concentration of microbial metabolites. According to the principle
of "excess causing poison", the excessive production or deficiency of
certain metabolites during disease development can accelerate the
inflammatory response through direct or indirect effects on immune
regulation. Metabolites act on immune cells to further regulate the
intestinal immune microenvironment, resulting in an imbalance of the
intestinal immune response and contributing to the pathogenesis of
autoimmune diseases [37 383940,

Inflammation, autoimmunity, and immune imbalance

Dysbiosis predisposes to an inflammatory state. A shift in the loss
of diversity or abundance of certain populations triggers cascades of
inflammatory molecules such as inflammatory cytokines, chemokines,
and T helper-17 (Th17) cells. These markers are linked to chronic
diseases associated with autoimmunity in patients suffering from
coeliac disease, inflammatory bowel disease (IBD), basilophilic
asthma, systemic lupus erythematosus (SLE), Sjogren syndrome,
multiple sclerosis (MS), and rheumatoid arthritis (RA). Moreover,
juvenile idiopathic arthritis is associated with reduced a-diversity in the
gut microbiota. Longitudinal studies show that a decrease in microbiota
diversity and altered microbiota composition precede the onset of
T1DM in genetically susceptible children. Interestingly, decreased
levels of the oral microbiome genus Haemophilus in children correlate
with an increased risk of subsequent allergies, asthma, or eczema
during the first five years of life. The relationship between dysbiosis
and high susceptibility to infections in patients with MS appears to be
also associated with immunological dysregulation.

Specific bacterial populations play important roles in inflammation
and autoimmunity. Enterobacteriaceae, especially Escherichia and
Shigella, are enriched in patients with autoimmune diseases. The levels
of the divided family Mycoplasmataceae, genus Mycoplasma, family
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Enterobacteriaceae, and genus Escherichia are enriched in patients with
active SLE. A higher ratio of Enterococcus to Lactobacillus and
reduced butyrate production in the gut microbiota have been implicated
as risk factors in RA. Oral and gut microbiota from patients with
autoimmune diseases exhibit higher proportions of pathogenic species,
such as Selenomonas, Methanobrevibacter or Enterobacteriaceae, and
a lower prevalence of immune-protecting bacteria, (4142 43441

Immune biomarkers linked to microbiome changes

Microbiome alterations have been associated with various
immune-mediated conditions, yet linking specific dysbiosis
phenotypes to the development of detectable disease-associated host
response patterns has proven challenging. Immune biomarkers
represent a potentially effective approach for early disease detection or
risk stratification because they can appear earlier than classical disease
manifestations. During the last twenty-five years, a variety of immune
markers have been connected with alterations of the intestinal or
respiratory microbiota, especially in chronic inflammatory disorders
like inflammatory bowel disease, asthma, or autoimmune diseases,
highlighting the modulatory potential of the microbiome and its
association with the immune advance of these disorders. A systematic
review identified such microbiome-associated immune markers and
proposed an integrative validation strategy to ensure that proposed
associations are sufficiently supported by existing literature.

Detecting dysbiosis or loss of diversity is insufficient for
establishing microbiome-disease relationships, especially for immune-
mediated diseases, where host immunity can respond before overt
clinical symptoms. Several studies have associated certain immune
factors with specific microbiome signatures, including altered relative
abundance of key taxa or specific phylogenetic or functional dysbiosis.
Integration of these findings may provide a foundation for future
microbiome disease-prevention studies. 45 46.47. 48, 45,46, 47, 48]
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Chapter - 3

Chronic Diseases Influenced by the Microbiome

The human microbiome plays a crucial role in the etiology, prevention,
and treatment of chronic diseases, and the observed microbiome-
disease associations may aid in the development of novel preventive
and treatment strategies. A diverse and resilient microbiome helps to
maintain host homeostasis, while a dysbiotic microbial community
may disturb metabolic homeostasis and promote chronic diseases.
Advances in Al can facilitate the investigation of gaps in current
knowledge, leading to hypotheses on preventive and treatment
microbiome interventions that can be fully and rigorously tested.

Chronic ailments such as metabolic syndrome, cardiovascular
disease, central nervous system disorders, inflammatory bowel disease,
and cancer are closely linked to the microbiome. Metabolic syndrome
is characterized by a constellation of risk factors, including abdominal
obesity, dyslipidemia, hypertension, and insulin resistance. Excess
lipid accumulation in macrophages and the increased biosynthesis of
lipopolysaccharide contribute to peripheral and central resistance to the
action of insulin, while atherogenic dyslipidemia leads to an increased
cholesterol ester content in hepatic cells and the deposition of lipids in
blood vessels, resulting in a greater risk of cardiovascular disease. The
composition of the gut microbiota appears to play a crucial role in these
pathological changes, as dyshiosis has been associated with increased
energy harvest from the diet, enhanced low-grade inflammation, and
altered short-chain fatty acid production.

Metabolic disorders and obesity

Strong evidence links the microbiome and metabolic disorders,
with altered diversity and composition associated with obesity, insulin
resistance, and dyslipidemia. Specific patterns of microbiome-derived
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metabolites may disturb metabolic homeostasis and contribute to early
life obesity. Disease-promoting signatures can be exploited to
predicatively model development, while directional relationships can
be inferred with longitudinal associations. Predictive models may serve
stratification needs but must be calibrated for population prediction.

Obesity is a heterogeneous condition and microbiome-derived
features can be leveraged for stratification. Using microbiome data,
population cohorts have been subdivided into obesity-resistant and -
susceptible subgroups and prediction models established. Such
signatures can be operated in reverse to uncover protective pathways
or identify preventive mechanisms in related conditions. Longitudinal
data support directionality between dysbiosis and disease progression,
enabling identification of microbiome signatures preceded by disease
and modeling of subsequent onset. Dynamic, temporally ordered time-
series data further elucidate developmental and causal relationships.
Disease signatures can be considered predictive if they anticipate a
condition before clinical onset, but generalizability remains a
challenging and important task.

Disease signatures may capture risk that is not reflected in the
patient population under study, suggesting within-cohort calibration
prior to wider application. Such a generalization strategy may not be
trivial when using microbiome signatures to predict development of
diseases that typically manifest within childhood, given that microbial
composition and metabolic cross-talk undergo shifts during
development 149 50.51.52],

Cardiovascular and endocrine diseases

Altered microbiota profiles and dysbiosis affect metabolism and
contribute to the development of cardiovascular disease and
hypertension. Microbiome-derived metabolites influence
cardiovascular function, in part by regulating blood pressure and
modulating cardiovascular autonomic control. Hypertension has been
associated with an overabundance of Firmicutes and a deficiency of
Bacteroidetes in the gut and with increased bacteria-derived
trimethylamine and brain-derived neurotropic factors. Gut bacteria also
affect heart rate variability, a key biomarker of cardiovascular
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regulation. Microbial depletion accelerates the development of
atherosclerosis and associated features through effects on cholesterol
metabolism, the immune response, and inflammation. Dysbiosis has
been linked with atherosclerotic plaque instability, and the structure of
the gut microbiota may predict future atherosclerosis. Several of these
mechanisms are also relevant in other endocrine diseases, including
irregularities in metabolic hormone metabolism related to reproductive
health, polycystic ovary syndrome, and prostate cancer.

Fecal microbiota transplantation has been investigated as a
potential therapeutic method for heart failure, hypertension, and
atherosclerosis, and a synthetically defined four-membered bacteria
consortium has been shown to reverse hypertension in mice. A
microbiome-associated production of uremic toxins has been linked to
chronic kidney disease. Chronic kidney disease is characterized by
inflammation and subsequent changes in the gut microbiome; tyrosine
and phenylalanine metabolism are also dysfunctional and correlate
poorly with clinical data. Modulating the gut-kidney axis by changing
the gut microbiome through pre-, pro-, or synbiotic approaches may
prevent and control chronic kidney disease progression. Microbiomes
of patients with primary biliary cholangitis display a decrease in
microbial diversity and altered functional pathways % 54 55 561,

Gastrointestinal and liver diseases

The gut plays an essential role in maintaining homeostasis, and any
alteration of the gut microbiota can have profound effects on host
health status. Dysbiosis has been linked to several Gl diseases,
including inflammatory bowel disease (IBD), irritable bowel syndrome
(IBS), colorectal cancer, and gastrointestinal infections. More
importantly, gut dysbiosis has also been associated with extra intestinal
diseases such as cardiovascular diseases, metabolic syndrome,
diabetes, obesity, and even neurodegenerative disorders. Fecal
microbiota transplantation (FMT), which allows for the transfer of
stool samples from a healthy donor to patients with different diseases
and is thought to restore gut health, has become a widely used therapy.
More clinical data about the effects of FMT on various diseases have
been accumulated, making it a potential treatment option for IBD and
Clostridium difficile infection (CDI).
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However, considerable safety concerns due to the variations of gut
microbiota profiles among patients and donors hinder the clinical
application of FMT. Moreover, the risk of transferring pathogens
during FMT procedures remains an issue, and thus the use of
synthetically designed microbial communities instead of whole stool
transplants has gained attention. Defined-microbiota FM-also known
as consortium FMT, is a therapy for Gl and liver diseases that aims to
replace the entire microbiota with a defined set of beneficial microbes
or communities, in order to restore microbial function and metabolism
while eliminating harmful taxa. This approach is considered to be safer
than standard FMT as only a few strains in a consortium are actively
monitored throughout the therapy 7. 56. 58,531,

Neurological and neuroimmune disorders

Alterations in microbiome composition or function are linked to
several neurological conditions. The gut-brain axis encompasses
pathways for microbiome-mediated signals to reach the central nervous
system, and an influence on mood and cognition is supported by
clinical data connecting specific taxa to autism, depression, or anxiety.
Gut microbiome perturbations also associate with neurodegeneration
in Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease.
Models based on fecal microbiota transplantation have evaluated
disease impacts on microbiome structure and function. These disease-
microbiome relationships open avenues for therapeutic investigations
aimed at restoration of commensal signaling to ameliorate the
condition.

Microbiome influences on neurological and neuroimmune
disorders are shaped by signaling from the gut to the brain through the
immune system, direct vagal innervation of the gut, microbiome-
derived metabolites reaching circulation and the enteric nervous
system, and indirect interaction through microbiome-modulated serum
metabolites. The overall role of the microbiota appears largely
beneficial with respect to mood and cognitive function. However,
noteworthy exceptions and contradictions exist, with disease-

associated microbiome changes detectable also in animal models ©° 6
61, 62, 59, 60, 61, 62]_
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Cancer and immune-mediated malignancies

A strong association exists between several types of cancer and the
microbiome community structure and functions. Tumorigenicity can
be promoted by microbial metabolites, such as secondary bile acids and
specific sexual hormones, as well as by bacterial infections (S.
Typhimurium, C. pneumoniae, and H. pylori). Conversely, dysbiosis-
related immunological factors could suppress colorectal cancer
development. The mechanism of cancer treatment resistance is also
related to the microbiome, as preservation of the gut microflora during
chemotherapy mitigates the systemic toxicity of the chemotherapeutic
agent. Furthermore, gut commensals can also modulate anti-tumor
immunity; for example, C. itersonii enhances the activity of immune
checkpoint inhibitors towards melanoma in mice. The various
associations between the microbiome and the process of tumor
development or progression are illustrated in Supplementary Figure 6.
The gut microbiome plays diverse roles in modulating different stages
of immune-mediated malignancies, such as head and neck cancers, via
regulation of the immune system, production of metabolites, and
response to therapy.

Page | 16



Chapter - 4

Artificial Intelligence in Biomedical and Microbiome
Research

Encompassing every sector of research and everyday life, profound
changes arise from powerful deep-learning language models and an
ever-improving human-computer interface. Al and machine-learning
approaches are sophisticated classifying or predicting systems, trained
on demonstration datasets and repeatedly refined. In supervised
learning, the model is presented with pairs of input features and
preassigned targets; the goal is to predict the target for a given input.
Unsupervised learning is applied when the target is unknown or
nonexistent, such as clustering objects based on signal similarity, while
reinforcement learning evaluates actions according to received
feedback.

Many biological signals and experimental results are now
evaluated using machine-learning techniques. Deep learning is mainly
applied to imaging, speech recognition, and natural language
processing; biological discoveries are facilitated by literature mining,
as large language models generate new insights and extract regulatory
relationships and interpretable hypotheses. After generating the
hypotheses, a cloud-based design loop generates and evaluates the
experimental design to confirm or reject specific hypotheses [63: 64 65 661,

Overview of Al and machine learning approaches

Gaining insights from complex, high-dimensional, and
heterogeneous biological data is challenging. Therefore, artificial
intelligence (Al) and machine learning methods applied in biological
research have rapidly advanced and diversified. Key Al-based methods
for biomedical research are supervised/unsupervised/reinforcement
learning models used to find relationships among variables in a defined
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learning space and to predict responses based on novel input data. In
supervised learning, algorithms are trained with a dataset containing
examples along with the desired outcome and are then able to learn
predictive models for similar new data. For unsupervised learning,
input data do not contain the answers. Instead, the algorithm finds
underlying structures or classifications within the data according to
certain similar features. Reinforcement learning is trained to explore
and learn the best actions through simulation and feedback signals from
each attempted action, optimizing long-term return.

Deep learning models directly learn high-level features or
corresponding classifications from raw images or signals. Specific
architectures, types of biological data, and evaluation metrics vary
among applications. Convolutional neural networks (CNN) are
designed for visual-pattern recognition to analyze 2D spatial data such
as molecular structure images and gene expression in tissue sections.
Generated features can be used as input for classifiers to make a final
decision. Recurrent neural networks, a type of parameter-sharing
architecture, are suitable for sequential data such as protein sequences
and nucleotide sequences. Long short-term memory (LSTM) is a
variant of recurrent neural networks designed to explore long-distance
relationships. Transformer models represent another family of deep
learning models based on self-attention mechanisms and perform well
in natural language processing tasks. (7. 68 69.70]

Deep learning for biological data analysis

Deep learning models can learn from various biological data types:
imaging data (e.g., microscopy, MRI, flow cytometry, and RNA-seq),
multi-omics  data  (genomics,  transcriptomics,  proteomics,
metabolomics), and signaling pathways. These models typically
require a large number of samples but can accurately predict unseen
molecular responses by exploiting high-dimensional signals. The
performance of a deep learning model is usually evaluated using
accuracy, AUROC, and AUPRC.

In the absence of sufficient labeled data, generative models such as
GANs and VAEs can generate synthetic data that resemble real
biological data. They have successfully increased training data size for
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image classification, disease subtype classification, molecular response
prediction, cell-type reconstruction, genes prediction, and multi-omics
integration. Domain adaptation methods have also been used to transfer
knowledge learned from labeled data in one domain to an unlabeled but
related domain 72 72 73.74.75],

Natural language processing in biomedical discovery

Natural language processing is increasingly applied to biomedical
knowledge extraction. The quantity and complexity of biomedical
literature, combined with the speed of discovery, demands automated
processing tools to complement human authorship. Unsupervised
techniques based on large, unlabeled corpora assist in pretraining
neural network architectures for transfer learning. Many studies utilize
domain-specific adaptations of BERT, applying these models to
standard sentence-pair classification benchmarks (e.g., natural
language inference). Beyond classification, text generation models
such as T5 hold promise for auto-summarization at varying scales.

Knowledge graphs implemented in the biomedical domain foster
supervised learning against labeled entities and relations, leading to
improved performance on related tasks. Tuning and evaluating sets of
existing resources addresses two common challenges in knowledge
graph construction: data density and sensitivity to bias or noise. In a
complementary vein, multiple training methods have been proposed in
sequences or multi-view settings, allowing for exploitation of potential
label sources. Natural language processing enables mining of diverse
biological hypotheses. Discovery pipelines include the extraction of
associations between stimuli and responses, candidate interactive
agents, and genes with redundant downstream pathways. [7¢ 77 78 791

Al-driven hypothesis generation

The Al model enables generation of multiple, highly diverse
biological hypotheses, followed by high-throughput testing in the
laboratory within a rapid cycle of hypothesis testing. Initially, the Al
thoroughly mines the existing literature to identify a specific biological
question and potential causative factors. Data streams generated from
high-throughput functional testing specifically test elements identified
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by the Al model in a manner analogous to the operation of the fastest,
high-throughput synthesis and screening platforms coupled to robotics
and Al currently available. The Al uses consensus pathway data to
establish a causal relationship from high-throughput biological
correlations.

This strategy enables exploration of some of the less well-studied
areas of biology where knowledge is limited; in these areas, carefully
designed Al- and machine learning-driven experiments will likely
yield novel findings and lead to the generation of novel findings that
may subsequently be explored in future Al and machine learning-
driven experimental analyses. The results obtained from these Al-
guided studies can then be mined in the same manner as literature-
derived data, and subsequently used to drive the generation of novel
biological hypotheses that can be tested via synthetic biology and
microbiome-directed therapeutic exploration that can then also be
rapidly implemented. The Al framework allows the combining of key
causal checkpoints to help further accelerate the rate of progress within
each area. [80, 81, 82, 83, 84]

Limitations and biases in Al models

Al offers powerful tools for biomedical discovery, but successful
application is contingent on the representativeness and quality of the
used data. Performance relies on the training data rather than the model
architecture. Imbalanced data can lead to bias toward predicting the
common class, while the interpretability of black-box models remains
a challenge. Further, small datasets might yield unreliable models with
little predictive power, and successive testing against a few biological
examples can produce misleadingly high predictive accuracy.
Nevertheless, the limited availability of high-quality data might not
only hinder model validation but ultimately impact the whole field of
research. Therefore, assuring data quality remains a pressing concern.

Problems can arise at all stages of data generation and processing
from raw sequencing data to cleaned and normalized feature tables.
Variances due to different platforms and laboratory protocols require
dedicated attention, for instance, by involving the actual laboratories
when compiling a meta-dataset or aligning data captured with other
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experimental settings. Adverse effects posed by batch configurations
can be detected during preliminary analyses and corrected through
multiple-method approaches or source-effect removal sessions.
Moreover, sequencing depth is a crucial factor influencing outcome
reproducibility, and input data should be extensive enough in this
regard. Consequently, data distributions facing high frequency shifts
should be resampled, preventing predictive models from relying on
rare features, [65 86.87. 8]
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Chapter -5

Microbiome Data Generation and Integration

Metagenomics and metatranscriptomics-widely used for characterizing
microbial communities at composition and functional levels-sample
the collective DNA and RNA of the community, indicating the
organisms present and their potential metabolic activities. Shotgun
metagenomic sequencing, which randomizes DNA fragments so that
both low- and high-abundance organisms can be sequenced without
relying on marker regions such as 16S rRNA genes, is increasingly
used. Metagenomics performs the sequencing in bulk, capturing all
reads and providing maximum data for community analysis, whereas
metatranscriptomics focuses on the RNA expressed at a specific niche.
Additional metagenomic and metatranscriptomic strategies, such as
16S rRNA gene amplicon sequencing.

Microbial products are also characterized thanks to the growing
adoption of LC-MS, GC-MS, NMR, and matrix-assisted laser
desorption/ionization mass spectrometry imaging technologies. Such
systematic interrogations produce metabolome and proteome profiles
of the samples, evaluating differences in metabolite types and
abundances across conditions. These datasets allow elaboration of
metabolite-function correlations. The microbiome interacts with
multiple host organs via several metabolites that can serve as disease
signatures. Proteome profiling identifies differences in protein
expression, linking specific proteins with relevant functions, pathogen
infections, or dysbiosis of the gut-skin or gut-brain axis. Integration of
metabolomic and antimicrobial peptide concentration data into

microbiome-associated signatures holds significant potential [ % %%
92]
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Metagenomics and metatranscriptomics

Metagenomics provides insight into the taxonomic composition of
microbial communities and contributes to understanding the associated
functional repertoires. It involves sequencing the total microbial DNA
(or employing shotgun metagenomics) from environmental samples,
typically using shotgun sequencing (SBS) or targeted sub-fragment
amplicon sequencing (such as 16S rRNA genes for bacteria and
archaea or fungal ITS regions). Metagenomics is not only suitable for
sequencing specific domains or kingdoms of life but can also be
applied to organisms with unknown reference genomes; in that case, it
permits metagenome assembly, followed by annotation of the
assembled genomes. Depending on prospective research topics, the
target composition and identity, and the bioinformatic capabilities and
libraries available, researchers can choose between taxonomic
classification using reference databases, where sequence identity is
sought in previously sequenced organisms, and more complex
functional prediction of putative uncharacterized proteins.

Metatranscriptomics extends metagenomic analysis onto the
mMRNA transcriptome level. Characterizing the metatranscriptome in
combination with the metagenome and the other "omics" produces
credible evidence about active functions in specific environments.
Metatranscriptomic approaches enable detection of genes related to the
current environmental conditions, including response processes such
as low oxygen concentration [3 94 95. 9],

Metabolomics and proteomics profiling

With their immense growth in recent years, metabolomics and
proteomics analysis technologies are actively expanding their
application to the microbiome field. Metabolomics aims to provide a
comprehensive profiling of circulation metabolites. Proteomics
profiling offers a detailed quantification of microbial community
composition and functional capacity through protein-level operational
taxonomic unit (OTU) sequencing.

The major technical platforms for metabolomics include nuclear
magnetic resonance (NMR) spectroscopy, gas chromatography-mass
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spectrometry (GC-MS), liquid chromatography-mass spectrometry
(LC-MS), and their combinations. Cumulatively, these technologies
cover a wide spectrum of metabolites from different classes such as
amino acids, fatty acids, carbohydrates, organic acids, lipid molecules,
and many others that can play a crucial role in host-microbiota
interactions. The formation and functions of these metabolites correlate
with various host disorders such as cardiovascular disease, obesity,
diabetes, and inflammatory bowel disease (IBD); even within the gut,
the microbiota produce several metabolites with far-reaching
regulatory effects. They regulate the gut integrity and gut-blood barrier,
serve as energy sources for colonic mucosa, and maintain the balance
of gut microbiota composition.

The major technical platform for proteomics includes
metaproteomics, which is based on deep sequencing of short peptide
fragment libraries and further mapping these fragments back to
metagenomic-assembled gene datasets. Compared with metagenomic
approaches, the proteomics are closer to what the microbiome actually
performs in the human body. Very recent progress has demonstrated
its ability to capture the fine-scaled protein membership in the
microbiome, [°7. 98,99, 100]

Single-cell and spatial microbiome technologies

New sequencing technologies can provide a single-cell resolution
of the living microbiome or its components and relate them, for
example, to immune cells at single-cell resolution in the mucosa.
ScRNA-seq, for example, has allowed the transcriptome of prokaryotic
and archaeal organisms to be obtained through Catalyzed Reporter
Deposition in situ-based scRNA-seq, generating the Carrera of small
prokaryotic cells in the FIB-SEM. Techniques of the former type can
also probe the presence of entire microbial communities in
combinations with other opportune analyses. Microbial organisms can
also be characterized through their placement within tissue via spatial
transcriptomics, and the conditions surrounding them can be measured
as well. The ongoing expression of the transcriptomes at single-cell
resolution of eukaryotic, bacterial, and acheral organisms with their
position within tissues can be obtained through spatial transcriptomics
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techniques, which can relate these single-cell expression data to the
presence of specific immune cells, for example, or the
microenvironment of specific bacterial communities. Some technigues
allow for the definition of microbiome-related chemical signals at the
level of entire organs, while others provide integrated microbiome-
organelle resolution. A broader description of the microbiome will also
start being offered by the integration of transcriptomes and proteomes
through new combined experimental and analysis strategies.

The great diversity of sequencing techniques is accompanied by
the increasing richness of reconstruction or detection methods that
allow mapping the associations and interactions of multiple species
over time and space. Various methods allow associations and
interactions between fungal, archeal, and bacterial microbiomes to be
inferred as well the resolution of these associations and interactions at
the level of metagenomes, gene-content profiles, or co-abundance.
Nevertheless, the analysis that remains largely understood and mainly
unknown concerns the environmental novel (meta) transcripts derived
from the microbiome. Resolution at the host-microbiome interaction
level is also starting to be addressed through predictive metagenomics-
coupled modeling approaches. With the great sensitivity and resolution
offered by scRNA-seq and by transcriptomics methods, these
techniques are progressively entering into the realm of analysis and
reconstruction of host-microbiome interactions using transcriptomes,
permitting the resolution of metagenome-based associations, as well as
the detection or prediction of novel associations, together with the
description of interactions (bi)findings) between different host and
microbiome members, [10% 102 103, 94]

Multi-omics data integration strategies

Successful prediction of disease-associated microbial signatures
and preparation of microbiome-based clinical predictive models are
based on a combination of metagenome, metabolome, and other multi-
omics data layers such as transcriptomics and proteomics. The utility
of metabolomic, transcriptomic, and proteomic data has been
demonstrated in microbiome-based disease models. Different analysis
strategies can be used to enable the integration of heterogeneous
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microbiome data layers collected in different studies. The integration
of metagenomics with multilayer concentration profiles is an effective
approach for improving the accuracy of predictive models and
understanding disease mechanisms.

The recent development of transfer learning methods enables the
acquisition of model knowledge from a source population where a large
amount of labeled data is available for public disease-related topics and
adapts it to the target population for a new or emerging disease with
extremely limited and scarce labeled samples. This strategy leads to
improved prediction performance with “less” by leveraging knowledge
learned from “more.” Large amounts of literature-based knowledge
extraction and validation pipelines are powerful instruments for

consolidating, confirming, and expanding predictive models. 104105 106.
107]

Data standardization and quality control

The use of microbiome data in artificial intelligence models can be
constrained by heterogeneous data generation methods across studies
and the absence of analytical best-practice standards. Despite extensive
advances in data generation, the establishment of technical processing
pipelines, and the development of meta-analysis algorithms, other
biological fields still lack agreed-upon standards for microbiome data
generation and analysis. Conversely, rapidly evolving automated
pipelines and comparative frameworks, which are specific to particular
types of biological data, have allowed other research fields to
synthesize massive quantities of quality-controlled data. The extension
of existing sample and data processing standards and the development
of Al-mining frameworks for microbiome data could aid in
overcoming these problems.

Data quality assurance is critical for both the data used in Al
analyses and the generation of data- and learning-model-specific
mining frameworks. Microbial community databases facilitate the
mining of reference sequences for diverse microbial substrates, serving
as essential resources for training and validating Al models. Al- and
machine-learning-based data assimilation frameworks that provide
tools for coarse-scale molecular-level explorations are also essential
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for interpreting spatial and temporal microbiome differences.
Integration tools that utilize advanced machine-learning-based
molecular-difference prediction can rapidly interrogate metagenomic
sequence data from hundreds of samples [108 109, 110, 111]
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Chapter - 6

Al-Based Microbiome Profiling and Pattern
Recognition

Artificial Intelligence (Al) tools enable taxonomic classification,
functional annotation, and feature selection from microbiome profiles.
High-dimensional data representation threatens generalizability,
interpretable biological priority of selected features depends on
designated criteria, and list- or signature-based methods for deriving
disease-specific patterns must ensure sufficient transferability.

Prediction of immune and chronic disease threats involves pattern-
recognition models trained on microbiome profiles and associated
health outcomes. Population-level models identify microbiome
signatures for characteristic signatures for these conditions, while
cohort-wide longitudinal prediction differentiates population-level
correlations from potential causal relationships. Cross-validation of
population-level  signatures across multiple cohorts  tests
reproducibility. Population- versus individual-level predictions
represent converse facets of model accuracy; generalizability-based
models inform microbiome-shifting strategies, whereas non-
transferable models facilitate personalization. (112 113,114, 115]

Taxonomic and functional classification using Al

Artificial intelligence is increasingly used for taxonomic and
functional classifications of microbiome data based on amplicon
sequencing data (16-19) and metagenomic assemblies (20,21) at both
marker-gene and whole-genome levels, including species-level
classifiers for complex datasets. Performance evaluations are necessary
to validate neural network meta-classifiers on sequences from diverse
environments. Such models have proven successful for taxonomic
annotations, yet many rely on deep learning approaches trained on

Page | 28



sequences from specific habitats-often Earth surface samples with high
abundance and diversity. Machine learning classifiers have also been
trained specifically for metagenomic data. Niche adaptation and
taxonomic feature abundance appear key in species identification.
Meta-classifiers for 16S rRNA gene sequences have been trained for
microbially diverse environments but can be used only to classify
among genus-level groups.

Functional predictions can also be conducted with neural networks.
Microbial multi-omics datasets can be fed to AutoEncoder models to
exploit clustering and disentangled-bottleneck properties and allow
dimensionality reduction in high-dimensional settings. A general
strategy to support taxonomic imputation consists of training a deep
neural network by combining label embedding representation and
transition probability. These meta-learning adaptations cover new label
distributions with minimal training effort. Moreover, recurrent neural
networks have been used to directly infer pathways and genes from
full-length 16S rRNA sequences, and pathway coverage can be learned

from gene co-abundance patterns in an unsupervised manner. 116 117
118, 119]

Feature selection and dimensionality reduction

Feature selection reduces the number of variables by selecting the
most informative and relevant features. The final feature set should
maximize the model’s prediction performance while providing a better
understanding of the underlying biological processes. Dimensionality
reduction transforms the feature space into a space with fewer
dimensions that captures most of the variance. This technique is
commonly used with image data but can also be valuable for omics
data analysis, where the number of features is usually very large.

Feature selection is critical for any classification task because even
a small number of redundant or irrelevant features can adversely affect
model generalization performance. Feature selection methods can be
grouped into three categories: filter methods, wrapper methods, and
embedded methods. Filter methods, such as ANOVA F-value
statistical tests, correlation, or mutual information criterion, measure
the relevance of each feature in isolation and rank them according to
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their scores in connection to the outcome variable. Selection is not
biased by the downstream model. Wrapper methods evaluate model
performance with different feature subsets, whereas embedded
methods perform selection during the model-training process. The
trade-off is that these methods are generally more computationally
intensive and prone to overfitting, especially when the number of
features is large.

After raw features are parsed, most machine-learning
methodologies benefit from using latent representations instead of the
original feature space. This allows a model to generalize better when
dealing with multiple datasets and population settings. Dimensionality-
reduction methods can be grouped into supervised or unsupervised
categories. Supervised dimensionality-reduction approaches, such as
supervised principal component analysis (PCA), remain close to
supervised feature selection methods in that they aim to achieve better
prediction performance in the decision stage. Unlike supervised
dimensionality-reduction methods, unsupervised approaches do not
use the label information of the training data. (120 121 122,123]

Disease-specific microbial signatures

Defining disease-specific signatures is a critical step for accurate
prediction and identification of disorders based upon microbiome data,
enabling the development of better diagnostic methods and the
elucidation of biosignatures related to underlying pathophysiological
pathways. Consequently, this section presents a detailed discovery
workflow for microbiome-disease signatures encompassing several
distinct cohorts belonging to a wide range of clinical conditions.

Potential disease-specific signatures can be identified in an
unsupervised manner or pre-defined for specific disorders on the basis
of known associations, or dysbiosis patterns. While microbiome
signatures may take the form of taxonomic or functional features, it is
necessary to cross-validate commonly identified signatures across
different cohorts to ensure robustness and accuracy. Specific signatures
are, therefore, subjected to stringent testing in different cohorts to
confirm their predictive power and biological relevance. [124 125126, 127]
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Predictive modeling of disease risk

Microbiome-based predictive models were constructed to estimate
the risk of multiple immune and chronic diseases. Meta-analyses
identified microbial features associated with disease, and external
independent cohorts were leveraged for model development. For
several diseases, models predicted risk years in advance of the clinical
diagnosis and classified individuals into risk strata. These concepts can
be further developed to assess the risk of additional diseases and might
ultimately assist clinicians in making proactive preventive decisions.

The microbiome participates in various biological functions that
have been imputed as putative mediators of the development of both
immune disorders and several chronic diseases influenced by the
microbiota. Therefore, the cumulative evidence suggests that the
microbiome could serve as a biomarker for risk prediction, early
disease detection, disease stratification, and personalized medicine.

Several studies have shown that microbiome-based models can
efficiently predict the risk of complex diseases. These models leverage
multi-cohort approaches that combine information from multiple
independent cohorts to better extract relevant signals from the
microbiome data. A meta-analysis assessed the association of the gut
microbiome with twenty-four diseases, identified microbial features
consistently associated with disease across cohorts, and subsequently
constructed predictive models for nine diseases using metagenomic
data from three independent cohorts. Overall, the models predicted risk
years before clinical diagnosis and stratified patients into risk groups.
Such approaches could be useful for other immune disorders and
chronic diseases influenced by the microbiome. [128 129,115, 130]

Validation and reproducibility of Al models

An essential aspect of applying Al models to predict human
conditions is their validation and reproducibility. Al-derived models
should ideally be trained and tested on independent cohorts not
included in the discovery phase. Internal validation is emphasized
when external data sets are unavailable and it is often used as a
preliminary step before submitting a model for external testing.
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Validated models must be open and clearly reported, along with
detailed descriptions of the biological rationale behind feature
selection. The complete procedure should be shared in an accessible
and reproducible format to facilitate broad utilization and testing.

For microbiome-based models, external testing of disease-
associated signatures is a priority. Discrepancies may indicate
sampling or methodological differences, population-specific signals, or
the effect of confounders not considered in the discovery cohort. Well-
defined stratification approaches, including sensitivity analyses, are
essential to circumscribe model applicability. (231 130. 132, 133]
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Chapter - 7

Predictive Modeling of Immune and Chronic Diseases

Microbiome data-based models enable the prediction of immune and
chronic disease risks and timeline of onset. Candidate cohorts are
scanned for associations between gut microbiome composition/
function and disease occurrence within an arbitration period. Disease
risks are then predicted by supervised machine learning models using
microbiome composition/function and non-microbiome risk factors as
input features. Meta-analyses have been conducted by combining
findings from hundreds of studies, such as colitis in mice, several
immune disorders, and metabolic syndrome in humans. Al algorithms
not only facilitate prediction but also guide the timing of sample
collection for early detection and stratification of disease risk groups.

Microbiome data collected over time allow an association analysis
between microbial shifts and immune or chronic disease trends. State-
of-the-art methods are applied to identify the influence of taxa variation
in one time frame on the incidence of disease in a later stage, thus
revealing potential causal directionality. Such longitudinal models
refine population-level prediction towards individual-level estimation,
while the former generalize well across cohorts, the latter provide
tailored strategies for disease prevention or amelioration. Al-based
models can pinpoint specific pathways targeted by different
populations or cohorts, hence offering translational clinical
implications.

The loss of microbiome diversity in life is generally recognized as
an indicator of disease; however, the preceding interval of diversity
loss prior to the occurrence also holds great implications for the same
disease. The shorter the duration before the manifestation of immune-
mediated disease, the stricter the time points of detection. Hence,
integrating such empirical support into prediction models will facilitate
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the closing of prediction gaps based on estimations derived from
standalone source species or groups. It has also been shown that
immune disorders can serve as a modulatory variable for dysbiotic
manifestations. (134 10,135 136]

Risk prediction using microbiome-based models

Artificial-intelligence models established a link between
microbiome features and multiple immune disorders/early-life
conditions, enabling prediction of risk in different growth cohorts.
Such predictions support focused disease-preventive actions,
particularly when made early and at population scale. Microbiome
patterns also enabled analysis of time-series data from different cohorts
to detect probable disease precursors at an individual level.

The human microbiome has been implicated in the development of
various immune and allergic disorders, such as allergic rhinitis, asthma,
and food allergies, as well as other immune conditions originating in
early life. A visualized representation of the connections among
microbiome changes, dysbiosis, and immune diseases provides a
reference for disease prevention strategies. A microbiome-immune
axis approach opens new possibilities for preventive medicine by
elucidating the underlying mechanisms and identifying operational
signatures. Al models trained on these signatures are valuable for risk
prediction in healthy populations-especially during critical early
periods such as infancy and early childhood, when preventive measures
can be quickly applied. (137 138, 139, 140]

Early disease detection and stratification

Microbiome-based predictive models hold promise for early
detection of immune and chronic diseases, facilitating the identification
of individuals at elevated risk prior to clinical manifestations. Recent
studies reveal associations between baseline stool microbiomes and
subsequent development of several diseases, including specific types
of cancer, Crohn's disease, and ulcerative colitis. Such findings raise
the question of whether these correlations merely reflect susceptibility
to disease or instead represent a precursory alteration in microbiome
composition that may precede clinical onset for extended periods and
drive disease evolution.
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To assess this possibility, a time-series cohort of fecal samples is
examined, with microbiomes reconstructed at multiple pivotal points
preceding disease onset. Additionally, clinical annotation of these
samples and associated patient metadata facilitates analysis with
respect to diverse diseases and conditions. Through careful
investigation of the resulting longitudinal data, clear timelines for
microbiome-associated disease onset and progression are established,
and conditions for subclinical stratification are identified. These
insights hold great potential for the early detection of immune and
chronic diseases and provide a foundation for longitudinal modeling of

microbiome-disease relationships and underlying mechanisms [14% 42
143, 144]

Longitudinal microbiome-disease modeling

Step-wise analysis of sequentially sampled microbiome data can
achieve causal updates on disease development trajectory and their
predictive pattern. Time-series microbiome structures can be combined
with potential data-related disease onset information to perform
supervised machine learning that differs from conventional predictive
modeling. The method is complementary to conventional predictive
modeling, interpretable by providing augmenting combined disease
association rules, and able to incorporate microbiome-related yet
temporally distant disease onset data to identify risk factors.

Well-calibrated prediction models provide more than just
association with the predicted class. These models are also capable of
estimating disease risk for each sample. For example, prediction
models for allergic diseases have high specificity, and their threshold
can be adjusted according to clinical demand. A pilot study on
prediction of Crohn’s disease-associated proteinuria onset at a 10-year
horizon has demonstrated a potential to provide patients with warnings
of disease risks more than 5 years prior to onset. Such prediction
modelling capabilities also suggest that prediction models are
potentially able to identify microbial features-like dosage forms
involved in the disease progression that have predictive power. Applied
on the original longitudinal dataset, population-level risk predictions
can be complemented with individual-level sampling dubbed “when
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will I get sick” questions that are increasingly popular with the public.
[145, 146, 147, 148]

Population-level vs. individual-level predictions

Al-driven microbiome-based predictive models enable forecasting
of disease risk at different levels- population and individual.
Population-level predictions identify general trends across large
cohorts; they can reveal the presence of clear shifts in the microbiome
composition during the onset of specific diseases, thus allowing for
early disease detection. Individual-level predictions, on the other hand,
address personalized medicine, enabling predictions of disease
susceptibility and prognosis for each patient or even allowing for the
stratification of individuals into specific risk subgroups. However,
while microbiome-driven models may be highly predictive for a
defined group of patients, they may not perform well when applied to
individuals from other groups with different characteristics at the time
of prediction.

Finding a balance between population-level predictive power and
model generalization performance remains a challenge, especially
when working with smaller, more specific cohorts used to train the
algorithms. In this case, strict external validation and multiple testing
procedures are essential to achieve reproducibility and general
applicability. Predictive models have the potential to deliver preventive
strategies that would monitor a patient’s microbiome trajectory over
time in order to generate specific intervention plans that can reduce the
risk of inflammatory bowel diseases, diabetes, and other disorders, or
signal a high probability for a brain disorder 5 years prior to clinical
diagnOSiS. [149, 150, 151, 152]

Clinical interpretation of Al outputs

Machine learning models successfully trained to predict the risk of
immune and chronic diseases based on changes in the gut microbiome
undergo a final transformation phase. Their outputs are converted into
interpretable descriptions, enabling timely clinical action for patients.
Microbiome alterations affecting underlying mechanisms are
highlighted together with corresponding targetable microbial taxa or
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metabolites. The specialist can then assess whether the manipulation of
these microbiome components is feasible for the specific patient at risk
and whether the active modulation can be coupled with primary
prevention strategies.

Output interpretation offers several decision-support options. For
instance, it may help determine whether reconstituting a specific group
of beneficial microbes is plausible by assessing their enterotype. It may
highlight cross-kingdom driver-passenger relationships that can be
exploited for co-administration of interacting species, such as specific
fungi and bacteria. Additionally, it may reveal loss of populations
involved in protective mechanisms, indicating that restoration of
associated functions through microbial administration is feasible.
Importantly, the outputs could facilitate patient stratification for
upcoming clinical studies. [253 154 155, 156]
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Chapter - 8

Engineering the Microbiome: Concepts and Strategies

Engineering the microbiome involves intentional perturbation of a
microbial ecosystem for a desired function. Desired functions vary
with application but may include dysbiosis reversal, disease risk
mitigation, or restoration of lost functions. Important considerations in
microbiome engineering include maintaining biosafety in the
engineered microbial ecosystem and achieving any functional
alteration with the minimal possible perturbation to the original
ecosystem structure; however, these principles are not universally
applicable. Probiotics, prebiotics, synbiotics, and microbiota
transplantation are considered established methods of dysbiosis
modulation. Engineered microbes, synthetic microbial consortia, and
second-generation probiotics consist of genetically modified strains
that can be safely reintroduced into the environment; these approaches
still face hurdles, including regulatory challenges and ethical scrutiny.
Precise modulation of defined microbial ecosystems, such as human
gut, skin, or vaginal consortia, aligns new data and understandings with
traditional microbiome transplantation methods. Precise resilience or
stability recovery in defined microbial nursery communities has also
been explored.

Specific modulation of dysbiotic ecosystems by community
replacement, species addition, and selective membership regulation
represents a rapidly evolving strategy in the field of microbiome
engineering. Controlled addition of external species, especially
keystone species, could facilitate natural recovery processes, whereas
restraint traits gene systems can be developed and implemented to
facilitate natural addition of desired, imported, and alien microbial
species for long-term maintenance. Proposed monitoring strategies can
evaluate stability, resilience, and healthiness of engineered microbial
ecosystems. [157, 158, 46, 159]
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Principles of microbiome engineering

Microbiome engineering aims to create favorable shifts in
composition or function, thereby enhancing health or reducing disease
risk. Successful strategies should be based on a mechanistic
understanding of host-microbiome interactions and the functions and
principles governing microbial community dynamics. Specific goals
include restoring lost ecological functions after extinction (e.g.,
through transplantation) and prevention of leukocyte-driven,
dysbiosis-mediated inflammatory pathologies by re-establishing
immune-inducing microbial aldehyde biosynthesis. Safety remains the
highest priority, encompassing engineering-induced unintended
consequences or unforeseen determinants of host-microbiome
interactions.

Preventive measures include the use of probiotics, prebiotics, and
synbiotics to increase microbial functions associated with lower
disease risk; the design of microbial strains or defined communities to
modulate the microbiota without transmissibility risks; and the
identification of targeted, controlled, and monitored keys to precise
ecosystem modulation. Three critical components are needed for
successful microbiome engineering: deep communication and mutual
learning between microbiome researchers and engineers; analysis of
host-microbiome interactions at all levels; and functional snapshots of
microbiome community stability. [157. 160. 161, 162]

Probiotics, prebiotics, and synbiotics

Constitute the most comprehensively defined categories of
approaches targeting the microbiome. Probiotics are live
microorganisms that, when administered in appropriate amounts,
confer health benefits on the host. This definition does not specify
genera, species, or strains, avoided in clinical trials whenever possible.
Prebiotics are substrates that are selectively utilized by host
microorganisms, providing health benefits. Synbiotics consist of a
combination of probiotics and prebiotics that beneficially affect the
host by improving the survival and activity of probiotics in the
gastrointestinal tract. Probiotics and prebiotics are readily available in
fermented foods, dietary supplements, and functional foods. Synbiotics
are available in fewer products, mostly as dietary supplements.
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Several candidate probiotics have been suggested for preventing
allergy and asthma. Enterococcus, Lactobacillus, and Bifidobacterium
species of genera have been investigated the most in interventions
targeting allergy and asthma prevention and often incorporated in
synbiotic formulations, sometimes with Inulin, oligofructose, or other
prebiotics. Few probiotics have been shown to ameliorate allergy and
asthma in humans; some of their effects may result from the combined
action of multiple strains-especially when tested at the population
level. Directed probiotics may support child growth and development
in subsets of children under environmental stress but do not replicate
human breast milk, and effects on specific immunoglobulin E levels or
allergy incidence after the first two years of life remain inconsistent.

For all categories of microbiome-modulating interventions,
evidence from recent clinical trials should continue to be examined and
synthesized in order to reveal reliable patterns and support causal
inferences. The balance of available evidence can thus inform Al-
driven design of hypotheses and recommendations for subsequent
intervention trials. [163 164 165, 166]

Engineered microbes and synthetic consortia

Comprise groups of distinct strains designed to achieve specific
functions through common biosynthetic pathways. Furthermore,
specific strains can assist in delivering auxiliary functions, thus making
the design of synthetic consortia a practical option for achieving
complex aims. During the engineering process, available metagenome-
assembled genomes (MAGSs) from disease-associated microbiota can
be utilized as a basis. When the potential of a strain to engender a
particular metabolite is documented, these strains can be established
and their effects evaluated at different dendrogram branches.
Consequently, the candidate-modulating strains can be assimilated into
distinct microbial consortia. However, natural ecosystems are
inherently stable and capable of residing and thriving in specific
environments. Consequently, a major safety concern related to
administration using engineered microbes and synthetic microbial
consortia is avoidability, or the possibility of surviving in a foreign
environment different from their natural habitats. The long-term effects

Page | 40



of artificial synthetic microbial consortia on the human body remain
unexamined; these concerns must be discussed and thoroughly
evaluated before moving on.

Artificial-intelligence approaches can provide real-time decision
support for patients by carefully monitoring their fecal conditions
through established smart healthcare systems either in their homes or
on the move. Such automated personalization could further stimulate
patient interest, enhancing the effect of such a personalized-modulating
method. Furthermore, with the rapid advancement of biotechnological
support, an even broader range of genes could be targeted for
biosynthesis; thus personalized design aiming for more complex
modulation might eventually be realized. To mitigate various diseases
related to alterations of the gut microbiome, precision modulation
should be conducted cautiously, aiming for balanced changes to restore
the robustness of the microbiome ecosystem, with the goal of returning
patients to a healthy state, [167. 168169, 170]

Microbiota transplantation approaches

Fecal microbiota transplantation (FMT) is established as a
powerful therapeutic modality for C. difficile infection, but
applications for other diseases remain limited. Vaginal microbiota
transplantation is an emerging intervention for recurrent urogenital
infection, although supporting clinical evidence is still lacking.
Defined-microbiome transplantation delivers a well-characterized
microbial community for which efficacy can be targeted to specific
indications. Infection risk is a major consideration in all microbiota-
transplantation strategies, and appropriate monitoring protocols should
be established.

Fecal microbiota transplantation (FMT) has been successfully
employed in the treatment of patients with recurrent Clostridium
difficile infection and is undergoing clinical testing in a variety of other
conditions. Despite potential benefits, the implementation of FMT for
disorders beyond C. difficile infection remains hampered by concerns
regarding safety and efficacy. Vaginal microbiota transplantation is an
approach to address recurrent bacterial vaginosis and urinary tract
infection, but supporting clinical data are scarce and preclinical reports
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have yielded mixed results. The application of defined-microbiome
transplantation enables the transfer of a known microbial consortium
with a specific therapeutic target, yet this method faces its own
challenges, including the risk of pathogen transmission and community
instability. To minimize the risk of transmission, all transplantation
strategies should be guided by evidence-based monitoring approaches
to assess infection risk. (53 5541711

Precision modulation of microbial ecosystems

Maintaining a healthy balance among microbial communities is
crucial to the well-being of the host. Disturbances in the community
composition can promote dysbiosis, which is defined as the loss or
overgrowth of certain members of the microbiota and concomitant loss
of biodiversity and community resilience, and a decreased ability of the
microbiota to respond to external stressors. Under the influence of the
host environment, diseases are associated with changes in microbial
composition and function, and are characterized by a specific loss of a
subset of taxa. It is thus possible to attain preventive or therapeutic
outcomes by precisely restoring the absence of members, or
modulating an overgrown population. However, such corrective
measures are not always successful, mainly because (i) the restoring
approaches do not consider the complete ecosystem, and only replace
the absent microbe, (ii) a defined-self microbiota transplant approach
is not supported by sufficient evidence or resources; and (iii) the
monitoring of the population response and of individual health
conditions remains a blind process, without feedback control.

To increase the chances of success, the transforming interventions
should first be predicted and designed based on a deep understanding
of the microbial ecosystem and of the patients’ characteristics, or
directly controlled by monitoring desirable patterns. Protocols can be
developed with such features for three sets of interventions. Firstly, the
introduction of abundant, under-consumed species should be based on
their associations with health-promoting functions (detoxification,
antiaging, etc.), and complemented by recipes for the required
substrates. Secondly, population intensities that have a deleterious
effect on the host should be identified, and interventions to reverse
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them designed. Finally, the trends of important microbial ecological
parameters (e.g. diversity, rarefaction of keystone taxa, redundancy of
interaction patterns or ecological network) can be exploited to assess
whether the microbiota is moving away from illness, and feedback
signals help to intentionally maintain a balanced course of progression.
Such monitoring patterns can also trigger and supervise microbiota
interventions in closed loops. (48 172 173, 174]
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Chapter - 9

Al-Guided Design of Therapeutic Microbial Consortia

Al-driven optimization methods facilitate the design of therapeutic
microbial consortia that target specific health conditions. User-defined
goals determine the microbial group structure and functions,
constraints ensure biosafety and stability, and compatibility screening
identifies supportive intertaxa interactions at several levels. Pathway
flux analysis guides metabolic engineering to achieve desired
functionalities, while simulation of environmental perturbations and
resilience assessment foster robustness. Finally, customization
pipelines allow patient-specific tailoring and personalization of the
therapy.

Existing therapeutic agents and planned clinical experiments
provide proof-of-concept for individual modules, while publicly
available cohort data set building blocks for interventions targeting
metabolic syndrome. A range of additional health problems is
amenable to similar Al-driven approaches, including immune diseases,
cancer, and neurodegenerative disorders. Robust pipelines enable the
efficient design of microbiome-based therapies targeting a wide array
of health conditions and key microbial traits 175 176 177, 178]

Optimization of microbial community structure

Microbial communities play a crucial role in maintaining
ecosystem stability, function, and resilience. The structure of these
communities, defined by the composition and relative abundance of
resident species, is a key determinant of these properties. Previous
studies have shown that the ability of microbial ecosystems to resist
perturbations relies on specific patterns of community structure.
Microbiome engineering efforts should therefore optimize community
structure. However, the objectives of these engineering efforts-such as
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promoting metabolic pathway expression, enhancing resilience to
perturbations, or improving strain compatibility-often conflict with one
another. Strain selection, interaction modeling, and intervention design
should therefore incorporate multiple objectives to achieve maximal
efficacy.

Machine learning optimization algorithms are well suited to these
multi-objective design challenges, and can also incorporate solutions
found using conventional approaches. Fitness landscapes of
community-level properties can be inferred from strain compatibility
assessments, and utilized to prioritize strain combinations for
validation in gnotobiotic models. Together, these approaches can
identify compatible community structures for particular applications,
guiding the selection of candidate consortia for next-generation testing.
In addition, perturbation response information can be integrated to
assess the resilience of candidate configurations, enabling the
identification of robust modular designs for sustainable microbiome-
mediated effects. [179 180, 181, 182]

Al-driven strain selection and compatibility

Two distinct principles guide the selection of microbial strains for
therapeutic consortia targeting chronic diseases and immune disorders.
The first principle emphasizes the identification of a chemically diverse
collection of microbes capable of producing health-related metabolites
such as hormones, neurotransmitters, and anti-inflammatory agents (6-
consortia). The second principle centres on ensuring compatibility
among the selected strains to maintain community stability throughout
their active life. The first principle maximizes the possibility of
detection; the second minimizes the risk of undetected negative
interactions that could jeopardize efficacy or stability, since resident
communities are less likely to inhibit strains that are naturally part of
the system.

To address the compatibility issue, mathematical models of
pairwise microbial interactions have proven useful by integrating
experimental data, co-occurrence patterns at different scales, and
characteristics of the microbial niche. In a different context, meta-
omics data can guide compatibility predictions, as certain metabolic
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activities can create barriers to the colonization of specific bacteria.
The effects of target metabolites on community resilience in the face
of abiotic perturbations are also relevant for the design of combination
therapies, as they can determine the best developmental order of
multiple treatment cycles, potentially allowing for the initial use of

monospecies microbiotherapy before switching to a cocktail approach.
[183, 184, 185, 186]

Functional pathway optimization

Outlines metabolic engineering goals and pathway flux analysis.
Engineering microbial strains for specific functions and a carefully
designed community structure can reconstruct a desired functional
profile in complex ecosystems, thereby enhancing specific microbial
metabolic pathways. The design of experiments principle also applies
here: the contribution of a specific functional pathway can be optimized
for performance and robustness before being incorporated into a more
complex community. With proper design, redundant or antagonistic
interactions can be minimized, allowing the community to achieve a
particular pathway goal while maintaining the required structure and
functionality.

Many metabolic pathways are known to achieve similar outcomes,
use similar substrates, and interact with common environments,
making it possible to define a pathway’s contributions and dynamics.
One well-studied example of the development of a complex
community that converts into short-chain fatty acids (SCFA) utilizing
soluble fibre, resistant starch, and non-starch polysaccharide at
physiological concentrations is the production of biohydrogen. More
generally, metabolic fluxes, trajectories, and preference relationships
can be further defined for any key metabolite and its chemical space,
and pathway influences on health can be described for any other
metabolite of interest. (187 188, 189, 190]

Stability and resilience modeling

Microbial ecosystems must be capable of withstanding
environmental perturbations to be effective, and these stability and
resilience characteristics need to be evaluated during the design phase.
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Following the framework of ecological stability theory, resilience is
defined as the area underlying a resilience curve, or the time it takes
for a community to return to its original state following a disturbance.
Stability can be examined by determining whether perturbations in
community structure propagate through the ecosystem, e.g., whether
abrupt changes in community composition also cause a large change in
ecosystem functioning. Exactly what measure of recovery time is
appropriate for a particular human application depends on the
ecological and clinical context; in the case of dietary changes and
feedback-controlled probiotics, for example, recovery speed is critical,
whereas in naturally-occurring microbial populations, full recovery
within a short timeframe may not be necessary.

Many machine learning (ML) methods designed to determine
resilience and stability within microbial communities make predictions
about community stability or resilience based solely on correlations
between community members. Due to the relationship between
community structure and function, these predictions may not be
misleading and, in fact, are often successful, but correlations must
always be interpreted cautiously. Other ML approaches use additional
ecological information, e.g., a metabolic network, to build larger
models that also predict functionality; this information can improve
predictions of stability and resilience, but at the cost of requiring more
detailed empirical data. [19% 192193, 194]

Personalized microbiome interventions

Microbiome interventions with a well-established clinical effect
may benefit from personalization, enhancing effectiveness in particular
patients or subgroups. At a minimum, such strategies can incorporate
evidence supporting higher treatment efficacy under specific
conditions. Examples include correction of specific dysbiotic
signatures; supplementation of a deficient community; or application
of an adjuvant treatment designed to complement an existing dysbiosis.
Another layer of customization may involve selection of treatment
eliciting a desired response within a defined set of options (e.g., choice
of one among several probiotics).
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More ambitious interventions consider patient-specific features
that are essential for treatment success. Fecal microbiota transplants
(FMTs) are a prime example, due to the necessity of consulting
treatment compatibility with the recipient's microbiota and the risk of
transferring an undesirable microbiome signature from donor to
patient. Finally, full engineering of the recipient's microbiome
community is theoretically plausible, aiming to establish the healthiest
community composition possessed by any subject within a healthy
cohort. Such an approach is entirely independent of clinical features,
relying exclusively on the microbiome targets identified in the
development stage and illustrated in the previous section. A practical
alternative is to maintain indirect control of a personalized FMT
procedure, in which case the donor’s microbiome offers a shortcut for
composing a pathogen-free microbiota accurately modeled and
optimized on a patient-specific basis. 57 195 1% 197]
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Chapter - 10

Microbiome-Based Prevention of Immune Disorders

Specific immune disorders, especially associated with immune
imbalance, are prevalent in the population and impose a huge burden
on public health. The identification of microbiome signatures can
provide insight into the development of preventive strategies. Such
approaches include modification of the early-life microbiome to reduce
the risk of allergic asthma, hosting supportive microbial communities
or transplantation of immune-tolerant microbiotas to ameliorate Th2-
skewed inflammation, delivery of defined bacterial communities with
adjuvant capacities to enhance vaccination responses, and oral intake
of products designed based on the microbiota-immune axis.

Microbiome-based strategies that aim to prevent or reduce the risk
of developed immune disorders-especially those associated with Th2
responses in early childhood or Thl-response skewing later in life and
promote immune tolerance rather than imprinting a Th1/Th3-skewed
response-have garnered attention. These strategies can be categorized
into two groups: those targeting the microbiome early during life and
those targeting the microbiome in adulthood. For the former,
modulation of the early-life microbiome with probiotics, prebiotics, or
synbiotics; fecal microbiota transplantation; and feeding with
microbiota-rich food products have all been proposed, rather targeting
specific microbial pathways or determinants in a precision-medicine
manner. In adulthood, immune-tolerant communities can be delivered
via fecal microbiota transplantation or focused vaginal microbiota

transplantation to ameliorate Th2-skewed immune disorders 198 199, 200
201]

Allergy and asthma prevention strategies

Allergy and asthma risk reduction strategies based on microbiome
profiling are diverse and engaging. Different pathways have been
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linked with elevating the risk of the two conditions. Conclusively,
probiotics, prebiotics, and synbiotics have shown accumulated but
mixed evidence for helping prevent asthma and allergy disorders in
children and adults. More support is desired, especially for the long-
term effects of such intervention, requiring standardized definitions,
operational means, and study populations. Animal models still serve as
health-related proof-of-concept studies, and their potential applications
should be cautiously considered, bearing in mind only a small subset
of food-associated microbes can act as allergy- or asthma-promoting
indications, while also maintaining safety during human evaluation and
future applications. More novel ingredients would be valuable
complementary material in addition to adequate external trials.

Allergy and asthma belong to a large family of hypersensitivity
diseases caused by T helper 2 (Th2) immune response orientation. As
one of early-life immune traits, the microbiome is recognized for its
essential role in steering immune equilibrium between effector and
regulatory phases at different life stages. Risk-stratified mother-infant
cohorts point to a temporal association between microbiome changes
and asthma onset during childhood. Maternally modified diets that
support early-life microbiome maturation, in line with the healthy
trajectory, associate with lower offspring asthma risk. Significant
associations have also been observed after early-second-trimester
dermatological condition and cesarean birth, respectively. However,
clinical evidence remains unknown on whether targeting other

microbial-modifying pathways can also mitigate later asthma risk. 2>
203, 204, 205]

Autoimmune disease risk reduction

Recent epidemiological studies suggest that a healthy microbiome
can reduce the risk of developing autoimmune diseases. However,
strategies employing microbiome-modulating probiotics have not been
widely adopted. Importantly, few studies have verified the potential of
microbial cues for enhancing tolerance towards allergens or other
environmental immunogenic agents. Such knowledge gaps impede the
design of biomodulating therapies that can guarantee microbial safety
and efficacy, delaying their move into clinical and commercial
applications.
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Autoimmune disorders result from unbalanced immune responses
mediating tissue damage. Changes in the composition and/or function
of the gut microbiota have been associated with various autoimmune
diseases. Several long-term cohort studies indicate that early-life
dysbiosis may predispose development of type 1 diabetes and multiple
sclerosis, while some evidence also links childhood antibiotics
exposure to juvenile idiopathic arthritis. Analysis of mucosal tissues
and adjacent healthy and diseased intestinal microbiotas points to a
significant association of Crohn’s disease and ulcerative colitis with
local and systemic dysbiosis. These observations suggest that specific
microbiome signatures could help predict future development of
particular autoimmune diseases. [2%6: 44,207 208]

Vaccination response modulation

Emerging evidence supports a substantial role for the microbiome
in modulating responses to vaccination. Several recent studies
observed direct links between vaccine-induced humoral and cellular
immmunity (measured as immunoglobulin levels, interferon vy
secretion, etc.) and either the metagenomic profile of the fecal
microbiota or specific microbiome-derived derived metabolites (e.g.
butyrate). Microbiome composition also correlated with antibody titers
induced by COVID-19 mRNA vaccination and the seroconversion
response to seasonal influenza vaccination. Longitudinal metagenomic
profiling of SARS-CoV-2 vaccinees detected predictive microbiome
signatures associated with SARS-CoV-2 anti-spike antibody levels.
Localization of rituximab-resistant mucosal IgA- secreting cells to the
gingival mucosa-the site of the initial immunization-to provide earlier
mucosal IgA production is required for increased anti-SARS-CoV-2
IgG and IgA responses. Metabolomic analysis detected reduced
production of B-hydroxybutyrate and other microbiome-derived
metabolites in vaccination non-responders and identified gut short-
chain fatty acids (SCFAs), particularly B-hydroxybutyric acid, as
potential biomarkers for predicting anti-viral antibody response in
individuals receiving COVID-19 vaccines.

To mitigate the possible negative effect of the gut microbiome on
vaccine efficacy, strategies that modulate microbiota composition and
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predicted function are under investigation for both inactivated viruses
and protein-based subunit vaccine candidates. These options include
supplementation ~ with  synbiotics, prebiotics, butyrate, or
Faecalibacterium  prausnitzii; combinations of the probiotic
Lactobacillus plantarum and tryptophan; Metformin, reported to
enhance vaccine development and immune response; and specific
dietary patterns. The combination of fecal microbiota transplantation

(FMT) and vaccination is anticipated to exert a synergistic effect. 2%
210, 211, 212]

Early-life microbiome interventions

Timely manipulation of the early-life microbiome, the vital period
for establishing microbiome-immune system interactions, holds great
promise for preventing immune and chronic diseases. The evidence is
accumulating for various approaches, but more naturalistic late-life
interventions to restore early-life signals remain to be explored
rigorously. A responsible combination of microbiome-based early-life
intervention and naturalistic late-life restoration may help prevent a
series of immune-related diseases.

Allergy and asthma have emerged as major global health burdens
during recent decades. The connections between the early-life
microbiome and the risk of subsequent allergy or asthma in human
cohorts have been cultivated intensively over the past few years. Two
different operational strategies for allergy/asthma prevention through
microbiome elicitation have been suggested: the reconstruction of the
lost vaginal microbiome in mothers, and the provision of probiotics that
mimic ancestral maternal vaginal microbiota associated with certain
phylogenetic lineages of Lactobacillus. Both approaches have
undergone testing in rodents and await prospective validation in
cohorts of humans.

A relationship has been postulated between type 1 diabetes and gut
microbiota; immune-modulatory probiotics are being explored. These
induce oral tolerance-like pathways that promote the down-regulation
of islet autoimmunity and the prevention of disease progression in
high-risk children aged 5 years. Vaccination with islet autoantigens
combined with early-life probiotic exposure (Lactobacillus plantarum
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K8) restores islet autoantigen-specific immune tolerance. Such
findings align with those of T regulatory cell induction studies in the
NOD model by early-life treatment with Clostridia or a mixed-species
microbiota. Together, these investigations point to a role for increased
gut microbiota diversity in diabetes tolerance. [213 214 215, 216]

Immune tolerance engineering

Several strategies aim to promote immune tolerance through
microbial cues. Probiotics that exert anti-inflammatory effects,
especially on the gut-skin axis, may prevent allergic diseases. Other
interventions either stabilize microbiome composition/transcriptomics/
metabolomics during immune tolerance induction, or target nasal, lung,
and gut microbiota in parallel. Evidence suggests that tolerance can be
enhanced by oral exposure to innocuous environmental microbes or by
natural or engineered cohabitation with friendly wild microbes. These
are more appealing than conventional bacterial/infection-based
schemes because they avoid biosecurity concerns.

Based on immune tolerance as the guiding principle, predictive
modelling and microbiome biosynthesis approaches are used to
mitigate autoimmune diseases or improve vaccination responses.
These include a combination of perturbation-transcription based
synthetic microbiota construction and immunological marker
prediction. Al-driven techniques can provide new insights into the
engineering of the gut microbiome to improve vaccine responses for
infectious diseases. Al systems can also explore the roles of
microbiota-derived metabolites in modulating immune tolerance
during a wvariety of immunological processes. Integrating
environmental exposures into predictive models may expand the

toolbox for promoting immune tolerance in other diseases 27 218 209
219]
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Chapter - 11

Al-Enabled Microbiome Therapies for Chronic
Diseases

Leveraging predictive models trained on large-scale, longitudinal
microbiome data sets, it is feasible to design microbiome therapies that
target chronic diseases, such as metabolic syndrome and type 2
diabetes (T2D). Commonly prescribed drugs for T2D affect the gut
microbiome, but the specific bacterial pathways and species involved
remain elusive. Examining the Putative Metagenomic Inconsistency in
T2D Treatment pathway across T2D, coronary atherosclerosis, and
Alzheimer disease may clarify the reasons for partial failure and
identify potential solutions. Similarly, inflammatory bowel disease
(IBD) and disorders along the gut-brain axis can be treated with Al-
guided pipelines: Al models detect disease-associated microbiome
alterations, and microbiome engineering techniques target the affected
pathways. For example, microbiome transplant therapy using various
types of transplant (fecal, vaginal, or defined) or external additives
(dietary intervention and prebiotics) can alleviate IBD, and the
engineering of TMA-producing bacteria can prevent or alleviate the
consequences of IBD and neurodegenerative diseases.

With respect to cardiovascular disease, a meta-analysis reveals that
the relative abundance of two TMA-generating taxa is higher in
patients, pointing to a potential preventive role for therapies aimed at
reducing their levels. It is becoming increasingly clear that the gut
microbiome contributes to multiple diseases via the production of
distinct metabolites. The next step is to identify metabolites for which
both supply and consumption pathways can be tailored in order to
enable a complete therapeutic solution. Looking at aspects of
cardiology as a whole may accelerate this process, with the associated
opportunities and challenges offering significant potential. At the same
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time, the gut-vaginal-oral-breast-fecal microbiome axis provides
additional considerations for treating complex conditions.

Metabolic syndrome and diabetes prevention

Microbiome alterations confer increased susceptibility to
metabolic syndrome (MetS) and diabetes. Therapeutic strategies
targeting the microbiota have shown promise for alleviating MetS in
rodents. Accordingly, Al-assisted pipelines have proposed candidate
interventions for MetS management. MetS encompasses type 2
diabetes (T2D) or conditions predisposition characterized by obesity,
glucose intolerance, insulin resistance, dyslipidemia, and hypertension.
The alteration of host metabolism propels excess caloric intake and
stimulates lipogenesis in peripheral tissues. Phylogenetically distinct
microbiomes enrich in the gut of patients with MetS, and functions
related to glucose and lipid metabolic disorders tend to differ from
those of healthy individuals. The microbiome is considered an
important contributor to the initiation and development of MetS.
Microbiome-targeted therapies are safe and effective for alleviating
MetS in mice. Translating these findings into human healthy dysbiosis
prevention during MetS requires discovery of appropriate candidates
and optimized therapeutic strategies for clinical practice.

Engineering the gut microbiome at early life stages to reverse
imbalances can mitigate the likelihood of developing future chronic
diseases and ultimately establish the first lines of defense for diabetes.
Changes in gut microbial composition during early life appear to
influence glucose homeostasis in adults. Specific alterations leading to
diabetic complications can also be identified, such that modulation or
restoration strategies can be proposed. Specificity of modulation
provides the opportunity to control for collateral, potentially adverse
consequences beyond the primary treatment purpose. Al-based designs
contribute to MetS treatment and novel strategies through engendered
commensal organisms capable of transporting gut microbiome
metabolites addressing MetS and its components.

Inflammatory bowel and gut-brain axis disorders

Aberrant interactions between the immune and digestive systems
can lead to inflammatory bowel diseases (IBD). An increasing body of
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evidence implicates dysregulated immune-microbiome interactions
during disease development, thereby highlighting the microbiome as a
therapeutic target. Improvement of IBD symptoms has been reported
after treatment with microbial signatures predictive of positive
therapeutic response. Similar approaches have been proposed for
traveler's diarrhea and recurrent Clostridium difficile infection.
Feeding trials indicate that a diet high in dietary fiber, vegetables, and
fruits, but low in saturated fats; oral administration of probiotics such
as Lactobacillus can effectively support gut-down left-enantiomer
dopamine concentration through the gut-brain axis. Additionally, fecal
microbiota transplantation reduces pain and Poor Self-Rated Health of
patients suffering from multiple sclerosis, thymoma, sleep disorders.
Modulation of the microbiota composition during treatment can control
the severity of gut inflammation and disease symptoms in a mouse
model of experimental autoimmune encephalomyelitis. Combined
problems in the development or function of both the central nervous
system (CNS) and the immune system may be associated with
neurological disorders, such as schizophrenia, autism, and Alzheimer's
disease, during early-life development. Taken together, these findings
underscore the potential for ameliorating gut-brain axis diseases by
enhancing communication along the gut-brain axis (220 221 222, 223],

Cardiovascular disease prevention

Microbiome-centered strategies have been proposed to reduce
cardiovascular disease (CVD) risk. A microbiome-based model for
CVD risk prediction identified disease-associated biomarkers and a
pathogenic pathway linking microbiome changes to atherosclerotic
risk. Several approaches modulating the disease-related risk factors in
the microbiome are currently established or have been recently
reviewed. These include strategies targeting hypertension,
trimethylamine-N-oxide (TMAO) production, lipid metabolism, and
metabolism of metabolic hormones (e.g., leptin, resistin, and
adiponectin) involved in atherogenesis, as well as microbiome
interventions aiming at atherosclerosis. Moreover, risk reduction has
been suggested for specific azole drugs and probiotics designed for
cholesterol management. However, further research integrating multi-
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omic and multi-dimensional microbiome data is desired to elucidate
mechanisms of action and identify specific targets for therapeutics, or
tailored microbiome prescriptions, employing microbiome control in
conjunction with classical risk-factor intervention.

In addition to these bottom-up approaches focusing on specific
contributors, systems-level strategies targeting the microbiome as an
interconnected ecosystem have been assessed for modulation of the
leading cause of CVD, namely, hypertension-an early and prominent
risk factor of atherosclerosis-by characterizing the compositional and
functional shifts of gut microbiota in animal models of hypertension
and classifying the specific metagenomic-metabolomic signatures
associated with hypertension. The results form a basis for developing
a multi-targeted, microbiome-prescriptive dietary strategy to prevent
hypertension. Taking into consideration the multitude of proximate
factors discovered in the gut microbiome and its ability to co-modulate
multiple complex diseases concurrently, a master modulator designed
to cover multiple diseases, including CVD, may perform better than

tailored microbiome interventions targeting specific conditions. 224 225
226, 227]

Neurodegenerative and mental health disorders

Alterations in microbiome composition and activity have been
implicated in various neurological and neuropsychological disorders,
increasingly studied under the umbrella of the gut-brain axis.
Visualization of microbes in the central nervous system supports a
causal role, and fecal microbiota transplantation can modulate
behavior. A potential bidirectional mechanism has emerged, with
depression and anxiety potentially altering microbial communities in
addition to the reverse effect. Microbiome-derived microbial
metabolites, particularly tryptophan degradation products, can affect
nervous system development and function, and their administration
may confer protective effects against multiple conditions. Al-based
modeling stratification approaches can identify potential microbiome-
based treatments for severe mental disorders. Microbiome modulation
potentially offers preventive action against neurodegeneration and
associated cognition decline. Elucidation of the underlying
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mechanisms enables targeted clinical trials, presenting a promising
means of delaying the onset or reducing the severity of
neurodegenerative disease.

Evidence from multiple cohorts indicates that the composition and
functionality of the gut microbiome are different in patients with
schizophrenia, Alzheimer’s disease, Parkinson’s disease, and autism
spectrum disorders compared to healthy controls. Causal links can be
established by demonstrating the presence of the microbes in the
nervous system and the ability to induce behavioral changes in germ-
free animals by fecal microbiota transplantation. There are, however,
additional observations of altered gut microbiome composition and
function in patients with depression and anxiety. Most studies support
the hypothesis that microbiome signals influence psychological health,
but few explore the inverse. Machine learning methods can answer
questions related to stratification and prediction based on the
microbiome on both sides of the causation chain. 228 229, 230, 231]

Cancer prevention and immunomodulation

Microbiome-directed preventive approaches against cancer.
Growing evidence points to a role of the human microbiome in cancer
onset, progression, and therapeutic response. This has prompted
research aimed at minimizing cancer risk via microbiome modulation,
including the transplantation of healthy microbiotas. The bacteria
Fusobacterium nucleatum and Peptostreptococcus anaerobius stand out
for their positive association with cancer, serving as potential targets.
Diet, the use of probiotics or prebiotics, and lifestyle interventions
represent additional preventive strategies.

Epidemiological studies have suggested that diet can affect the risk
of certain cancers through modulation of the microbiome. The
association of Synlogic's engineered strain of E. coli with a multiplex
cocktail of common antitumor agents in preclinical models of AML
also points to the potential of microbiome modulation to improve
tumor therapy. [232, 233, 234, 235]
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Chapter - 12

Diet, Lifestyle, and Environmental Influences

The complex interplay between diet, lifestyle, environment, and the
microbiome is receiving growing attention. Causative connections are
beginning to emerge among diet, microbiome composition, and
immune parameters. The microbiome modulates the association
between dietary components and allergic disease, while various dietary
groups affect the interactive role of the microbiota and the risk of
developing asthma. Integrating dietary exposures, microbiome data,
and immune response into a unifying system through Al may facilitate
the development of personalized diet strategies to reduce the risk of
immune diseases. These components can thus become parts of a
personalized decision-support system, predicting the effect of
nutritional changes on health status.

Physical activity and circadian rhythms also influence the gut
microbiome composition, indicating that both external (e.g., pressure)
and internal (circadian oscillation) signals together modulate the gut-
dwelling microbes. Changes in the environmental microbiome
associated with urbanization and lifestyle hazards also exert strong
impacts on human health. The use of biopolymers made from starch
after microbial fermentation with probiotic strains including
Lactobacillus rhamnosus GR1, Lactobacillus acidophilus, and
Lactobacillus plantarum has been proposed as a preventive measure to
protect the gut from gut-use-associated antibiotic treatment and for
potential readjustment after such treatments. In general, digital health
is an opportunity for a full integration of sensors, microbiome and
health data, allowing for continuous health monitoring, feedback-
controlled microbiome modulation, closed-loop interventions,
integration of interactions and relationships between different
parameters, and active smartphone-based interaction between patients
and physicians. [236, 237, 238, 239]
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Diet-microbiome-immune interactions

Diet is a crucial modulator of the microbiome and, consequently,
can have a strong impact on the immune system. The findings of human
and animal studies that explored how dietary factors influence the
microbiome and which dietary constituents are key modulators of
specific immune decisions have been compiled. Causal pathways
connecting diet, microbiome, and inflammation can now be modeled,
paving the way toward personalized nutrition planning that takes the
dietary-microbiome-immune relation into consideration. Moreover, an
Al-assisted decision-support platform can be envisioned that will
enable individuals to receive personalized nutrition guidelines. This
platform would aid the consumers wishing to find diet-lifestyle choices
that improve health and well-being.

The introduction of a wide array of synthetic and natural
compounds through the diet substantially impacts the composition and
activity of the microbiome. The food composition and dietary habits of
a population can alter the composition of the gut microbiome over time.
The type of main dietary pattern consumed by the subjects of each
study influences not only the community structure but also the
composition and predicted functionality of the gut microbiome. Certain
dietary constituents such as specific lipids, carbohydrates, polyphenols,
and proteins have now been linked to specific taxonomic groups within
the gut microbiome. [240. 241, 242, 243]

Al-driven personalized nutrition

Diet is a major determinant of the microbiome, and in turn, the
microbiome regulates nutrient absorption and metabolism. Microbial
dysbiosis has been shown to contribute to several chronic ailments,
including allergies, type 2 diabetes, metabolic syndrome,
cardiovascular disease, inflammatory bowel disease, obesity, and non-
alcoholic fatty liver disease. Causal pathways between microbiome,
diet, and immunity have been explored extensively, allowing the
identification of key metabolomic features as predictive biomarkers of
allergic disease and immune tolerance.

Microbial-based personalized dietary recommendations and
decision-support systems may therefore improve health outcomes.
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These systems rely on various types of nutrition data, including dietary
intake, microbiome composition, enterotype clusters, and nutrient
concentrations of biological fluids. Feedback mechanisms based on
combinations of physiological indicators can boost adherence to
dietary strategies and increase the likelihood of achieving clinically
relevant outcomes. Predictive models that incorporate external
environmental factors, such pollution and antibiotic exposure, allow
the elaboration of personalized dietary recommendations that take all
components into account. Finally, digital tools with feedback control
represent the next steps in this field since they allow for real-time
closing of the nutritional loop and enhanced decision-support capacity,

thereby promoting improved health outcomes, [244 245, 246, 48, 244, 245, 246, 48,
247]

Physical activity and circadian rhythm effects

Continuously collating data on physical activity and circadian
rhythms shows these processes shape the composition and active states
of the gut microbiome, which in turn influence health and disease risk.
Personalized lifestyle recommendations can thus be generated by using
microbiome changes as intermediary signals.

A growing number of studies point to complex and dynamic
relationships between the temporal patterns of bodily functions and the
community composition and operation of the human microbiome.
These relationships extend beyond the well-established connections
between diet and the composition of the gut microbiome. Variations in
physical activity levels-including both types of activity (exercise
training vs. limited physical activity) and modes of activity (aerobic vs.
resistance training)-were linked to fluctuations in the diversity,
composition, and activity of the gut microbiome. Key factors deserving
special emphasis include circadian cycles and sleep duration.

Lifestyle patterns-such as food intake, sleep, physical activity, and
circadian rhythm-are all deeply associated with human health and
disease risk. The ongoing development of digital health, wearables, and
biosensor technologies is now making it feasible to monitor these
patterns in real time. As these lifestyle measures are continuously
collected in very large populations with diverse diseases and
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ethnicities, they can serve as training data for Al models. In addition to
direct effects on health, real-time lifestyle data can also be integrated
as intermediaries affecting the composition and operation of the gut
microbiome, in combination with other data modalities.

Environmental exposures and microbiome shifts

The environmental exposure factors affecting the microbiome
include pollution, antibiotics, and urbanization. Community-level
approaches integrating information from different research domains,
including microbiome profiling, cohort studies, multivariate
association testing, multiplex laboratory experiments, exposure
assessment, estimating effect size, and down-sampling caused
substantial shifts in the microbiome at the city level. Airborne
particulate matter emitted by traffic indicated a positive effect on the
abundance of potential pathogens in individuals living at different
distances from the traffic polluters. Biomass burning and engine-
related traffic pollution have been found to be associated with
mucophilic and nasal Klebsiella species. Concentrations of burn and
traffic markers such as potassium and indium in the air were positively
related to the frequencies of a wide range of febrile illnesses and simian
virus 40 in the inhabitants of the city of Kolkata. The commensal
microbiome may help to establish who can tolerate superinfections
after extreme air pollution exposure. It has been established that
pathogenic infection risk increases when community-living fauna and
flora become old and lack biodiversity-creating stressors like fire and
flood.

The industrial development of urban centers, using motor vehicles,
power plants, and thermal power stations, has raised sulphur and
nitrogen concentrations in air to toxic levels and led to superinfections
of human and animal pathogens. Long-term exposure to excess sulphur
and nitrogen from various sources was associated with an increased
risk of multiple infections in children, and sampling from the natural
vegetation indicated a 2000-fold increase in the sulfur-oxidizing
bacterium Thiobacillus thiooxidans. The incorporation of healing
practices into public health to mitigate or control the effects of the
urbanization-associated combinations of pathogenic pollution sources
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has been stressed. Children astride the Ganges River have been
subjected to heavy burdens of infectious diseases, suppressed
immunity, and increased consumption of antibiotics. [248-249. 250.251]

Behavioral data integration in Al models

Should encompass subject privacy and data protection when
individuals participate in studies, long-term collection, and the type of
data collected. Behavioral data can greatly improve the accuracy and
practicality of the assigned task. Data fusion can strengthen the ability
of a single model to reason across the modal in different ways.
However, biases in the samples that violate the fair and just principle
or insufficient samples may greatly reduce the prediction capability of
the model.

Individuals participating in studies should provide analysis plans
or requests to investigators before the collection of behavioral data,
including the duration of the collection, the prediction model needing
data, the type of data needed (e.g. characters, response patterns,
physical activity, sleep habits, or nonspecific activities), and sampling
frequency. Long-term collection of such data will improve the practical
aspect of using data to predict the success of the disease. The choice of
the type of behavioral data is largely data dependent. For example, if
the prediction model is trained with time series information (e.g. blade
signal of some affection), then using a single blade signal as
compensation will only add noise instead of enhancing the model. If
data from multimodal sources are fused into a single pipeline, then the
amount of data used in the analysis should be as big as possible to avoid
over—fitting. [252, 253, 254, 255]
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Chapter - 13

Digital Health, Wearables, and Real-Time Microbiome
Monitoring

Integration of wearable and biosensor data; specify data streams
and harmonization needs.

Instruments worn or implanted by users capture digital biomarkers
indicative of vital parameters such as health status and risk, lifestyle,
and environmental factors. Wearable and stationary devices for
monitoring  metabolism, physical activity, heart activity,
neuromuscular activity, and many other biochemical and physiological
processes are being explored. These low-cost and low-impact data
streams can be integrated into the Al models as additional features for
prediction and stratification. Data from mobile sensors coupled with
saliva sampling will give information about the oral microbiome along
with preventive support options, suggesting preventive measures
associated with microbiome-related diseases. Continuous and
automatic health data collection using wearables will enable real-time
monitoring of health status by clinicians and care providers, producing
alerts if any information is out of normal ranges.

Development of closed-loop systems that offer personalized
intervention procedures is also needed. Such an approach can help
design feedback-controlled interaction plans: the Al models used for
predicting responses to natural or synthetic microbiota freshwater can
be integrated with wearable sensor data to modulate the microbiome
safely through nutrition, pro-, pre-, syn-, or postbiotics in a closed-loop.
Continuous monitoring of patients by combining mobile health
platforms with Al-driven coaching will help motivation and adherence.
Ensuring data security and ownership (privacy, governance, control,

and consent) will enhance patient acceptance and engagement. 256 257
258, 259, 256, 257, 258, 259]
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Integration of wearable and biosensor data

Wearable devices and biosensors monitor diverse dynamic health
metrics in population microbiome studies. Continuous heart rate,
activity, sleep, and body temperature data from wearables outline
short-term variations, while smart body-washers quantify daily skin
microbiome disturbances. SCFA and hormone levels, sensed in breath
or sweat, reflect gut-brain axis activity as well as metabolic and
circadian states, enabling continuous, fine-resolution health
representation. Continuous glucose monitors provide near-real-time
glycemic ranges, generating predictive windows framing events of
interest for associated microbiome dynamics. Sweat glucose-
microbiome paths enable the training of prediction models. Integrating
multimodal wearable data with microbe-targeted predictive models
refines associations between dysbiosis, HDL, and lactate/propionate
profiles.

Wearable data help define and track a person’s health from
multiple angles, creating a feedback system based on the subjective
sensation of well-being or clinical needs. Such information provides an
unprecedented opportunity for continuous health surveillance, real-
time detection of risk factors, and timely alerts. Additional mobile
health applications can assess mental status via communication style,
coded expressions, and sentiment analysis, along with possible
semantic analyses for edge computing. Such advanced capabilities can
improve adherence to treatment or supervision by coaching individuals
integrated into digital health systems that generate alerts based on
wearable data.

Combining computer-zoologue apps with biosensors, social
activities or behavioral changes-such as circumstantial contacts,
interactions, or present emotional state-also allows monitoring of
microbiome-affecting factors and autonomously provides feedback via
preferred social channels. Integration into a decision-support system
capable of considering factors influencing changes in a targeted
microbiome can provide clinical feedback and advice to individuals
throughout daily life-such as feed-exercise balance and external
exposure-enabling continuous data collection from many players and
supporting other dynamic data cores.
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Continuous health monitoring systems

Integration of wearable and biosensor data enables continuous
health monitoring systems with real-time alerting and interpretative
capabilities. Collected data constitute new input layers for Al models,
providing an energetic real-time overview of the individual conditions
without exposing sensitive personal data in the models. The detected
health trends are interpreted by specialists, and alarms are generated
for irregular data patterns at an early stage. The information is
continuously shared with the user through a smartphone interface and
an optional wearable device. These systems empower the user and
increase motivation to improve health condition and lifestyle.

To maintain a healthy lifestyle and pre-empt the occurrence of
diseases, the ideal approach is to stimulate the self-correcting
mechanisms of the body or modify specific health determinants in a
positive direction. An optimal strategy is to implement a closed-loop
health-regulating system for microbiome modulation: a system that
collects signals about the health condition and conveys them to the Al
model that recommends the precise action needed to restore balance-
e.g., modulating the diet or physical activity in real time, feedback-
modulating the microbiota, or suggesting the use of specific
supplements or pre-or probiotics. 267

Feedback-controlled microbiome modulation

Feedback-controlled interventions could maintain continuous
modulation of the microbiome. Automated identification of deviations
from target microbiota profiles would trigger closed-loop
interventions, with actions governed by user-defined risk thresholds
(for example, potential disease relapse). Such systems should also
incorporate additional safety checks to avoid excessive deviation from
baseline microbiota structure, which could lead to unintended
consequences. Initial interventions would remain advisory, providing
personalized recommendations for diet, lifestyle, and supplementation.
Over time, however, user engagement and trust in the system could
support adoption of automated feedback responses, such as provision
of selected supplements via biosensors or smart appliances. Eventually,
permissioned access to wearable data streams from all users across
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clinical cohorts could facilitate identification of trigger events,
enabling preventative dual-targeted microbiome modulation at the
population level, accordingly adjusted for socio-environmental
conditions and other risk factors, [261- 262 263, 264]

Mobile health platforms and Al coaching

Mobile health platforms enabling habitation normally do the
desired task, decreasing user interaction overhead and improving
overall experience. Data collected via wearables or biosensors are
integrated into a bottom-level of the work. Even user-assisting, patients
should actively monitor their health condition and provide feedback
about unexpected changes, such as unusual biometric values,
symptoms, or risky behavior. Alerts activation should be conditioned
to error rates, minimizing false-positive or false-negative situations.
Continuous health fraction is charged with autonomous interpretation
of signals: scoring functions suggest modifications for the next period,
supporting optimization of probiotics, prebiotics, or synbiotics intake,
active drug intake, or other modulatory agents. Even users are not
connected to the system, abnormal health fractions alerts are sent.

Mobile health platforms engaged to promote adherence are close
to coach support and to random reinforcement. A reporting
environment is provided to patients with intuitive UX. Information
from physiological or contextual factors is periodically integrated into
a prediction function, suggesting personalized guidelines to change
behavior or diet. The underlying Al model is regularly updated, aiming
at the user. Moreover, information from the platform guides sampling
reducing data privacy issues, by using sensitive data for the specific
individual evaluation of attraction magnitude for a determined food.
Achievements from patients in overcoming health challenges indicated
by the prediction function are reported, increasing motivation to
continue with the assigned actions. Concerns related to data usage for
Al model updating are clearly stated to users to obtain full consent
during sampling. [265 266. 267, 268]

Data security and patient engagement

Protecting the privacy and security of data collected from
individuals who engage with Digital Health (DH) systems is
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paramount. DH and Al-based systems require access to sensitive
patient information and biomarker data and continuously collect
information on patients’ behavior, habits, and environmental
conditions. Residents are often not aware of the breadth of information
collected and the potential uses of that information, leading to a
possible loss of confidentiality and concern related to the need to share
private data with their health care providers. Concerns about data
security, loss of confidentiality, or the approval of unwanted ads after
online tracking may affect the adherence to mobile health or digital
health systems. It is, therefore, crucial that these types of information
are protected and that patients are aware of possible uses and risks
associated with their private information.

Trust depends on an understanding of how private information is
stored, used, and potentially shared with third parties by the company
that collects it. This is especially important for sensitive data provided
by digital health systems (CHAPITRE 14). As a result, adherence
responses may be positively affected if the company has strong privacy
policies. It is important to design mobile technologies and wearable
systems that are supportive and respectful in their interface with users
and that provide users with a virtual environment enabling active
learning and user engagement. [269: 270, 271, 272]
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Chapter - 14

Ethical, Legal, and Regulatory Considerations

Defining data privacy remains a challenge. Stakeholders disagree about
which data should belong to the patients who generate it. Some
consider the evidence generated by wearables and other biosensors
designed to monitor health states for the sake of the users also their
private data. Others believe that the results these devices closely
resemble the outputs of clinical examinations or laboratory tests, which
thus should belong to the health systems. Collaborative and democratic
governance policies could help define the ownership in an inclusive
manner, ideally establishing a baseline that varies across jurisdictions
depending on local priorities, values, and willingness. Such policies
could also define consent models regarding the ingestion of image and
sensor data that some digital health applications need in order to deliver
meaningful information regarding the patient. Users should opt in or
out of digital health dashboards and related decision-support
applications.

Bias in Al decisions can come from many sources. Health data
population unbalance may lead to under-represented but safer
population samples. Opacity in the pipeline may lower the level of trust
and acceptance in the result-or the distribution method. If interventions
can effectively benefit only certain categories or groups, yet are
discussed with a consumer/customer logic rather than a social logic,
mainly benefitting a wealthy category while neglecting overall public
health responsibility, society may question their acceptance. Such
issues need to be carefully addressed in order to safeguard justice and
ensure a cross-distributive effect. If detected and explained, public
health authorities can mitigate the unbalance. What remains unclear
will always enhance the gap of untrustworthiness. The responsibility
of justice must be properly assigned to the party being investigated or
treated. Hence, bias must always be addressed.
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Regulatory agencies must adapt traditional frameworks that
designed, validated, and approved classical medications and
interventions, since the approval and release systems for microbial pills
may pose different and more serious questions. Experimental or pilot
therapeutic actions may incorporate the use of signalling, acting in a
spatio-temporal manner, for treatment purposes, which constitute a
legal grey area never before envisaged. External signalling may
stimulate or inhibit certain pathways, or restore patient's crossed-
signalling equilibrium. Interestingly, a recent report proposes a new
category of regulators, termed "DCR-Data Competence Relations", to
oversee such actions. Aimed at data-driven development of
microbiome-focused therapeutics, a DCR should guarantee safety
throughout the whole production chain, from marketing to
commercialisation, and at all later stages, if any. [273 274 275, 276]

Data privacy and ownership

The rights and ownership of health data, especially regarding
medically relevant data, are inherently a sensitive subject. To some
extent, healthy members of the population, patients, government
entities, nonprofit and commercial organizations, and health
universities contribute to data generation. At the same time, data-
pooling policies vary from protocol to protocol. Individual companies
may retain exclusive intellectual property without sharing returns.
Hence, the public is deprived of self-ownership of the data they share
but also becomes financially liable for the investments by other natural
or legal entities. With the consumption of countless supporting
biological samples by the common citizen, is it not natural for them to
receive the benefit of disclosed research results built upon their data?

Some citizens and institution rulemakers wish to remain entirely
public in health issues and the virus prevention strategies and readiness
efforts for future pandemics. Others are very reluctant as they value
privacy, wish to remain secretive, and ask for exclusivity. Those
wishing to give value to their biological signal for the entire population
or for a specific group should have freedom of use of one of the
embodied split returns. The elaboration of fine metadata for a wide
population with the help of medical specialists and commercial
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companies offering aids in their platform could help in fulfilling
requests for cohorts. In countries whose legislation allows sensitive

health places and companies, such data can be owned for a specific
purpose [277, 278, 279, 280, 281]

Ethical challenges of Al-guided interventions

The development of Al-assisted biomedical applications may
introduce ethical issues, including bias in the training database that
affects prediction quality, lack of representativeness in the population
undergoing treatment as a result of model-facilitated stratification, and
unaccountable output when patients receive the intervention blindly
targeting the Al-estimated effect within an unidentified mechanism.
Engelbart's proposition regarding machine-assisted augmentation of
human intellect aims at promoting human creativity by ensuring that
important decisions such as treatment designs, stratifications, run
predictions, and interventions are made by intelligent humans
supported by advanced Al methods and models that carefully present,
visualize, and interpret for humans the analyses of existing knowledge.

In addition to ensuring that decision-making remains under human
responsibility, clinical intervention strategies minimising control
variables and focusing on free will in Al-guided decision support
systems may also help to alleviate Al-related ethical problems by
minimising bias and allowing intervention from a higher layer Al
model trained on the user model of the first-layer decision support
system. These and other factors affect the level of public trust and the
rapid acceptance of Al-assisted digital health strategies. [282 283, 284, 285]

Regulatory frameworks for microbiome therapies

While microbiome research is advancing rapidly, the regulatory
frameworks for microbiome therapies remain limited and
heterogeneous across jurisdictions. Harmonized regulations are needed
to facilitate global research, development, and commercialization.
Regulatory authorities should adopt a science-based approach specific
to microbiome therapy without the bias of traditional pharmaceutical
development. The identification of health-promoting microorganisms
and updates of regulations require a clear overview and in-depth
analysis of the role of the microbiome in health and disease.
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Current regulatory frameworks for microbiome applications vary
considerably among different jurisdictions. The use of pro- or
prebiotics is generally classified as a food product. Fecal microbiota
transplants constitute a therapeutic product in Europe and North
America and are regulated accordingly. The FDA considers fecal
microbiota transplantation a biological investigational new drug, for
which any clinical trial must follow good manufacturing practices.
Microbiome-based therapeutic consortia, e.g. a defined consortium
manufactured by Synlogic Pharmaceuticals for treatment of urea cycle
disorders, are being developed in strict compliance with regulations for
pharmaceutical products. Such therapies must meet conventional
criteria for safety, efficacy, and/or quality. The European Medicines
Agency’s Committee for Advanced Therapies considers microbiome
therapy as a combined advanced therapy medicinal product, which
contains cells or tissues and acts principally by metabolic,
pharmacological, or immunological means and that is not a medicinal

product as defined in Regulation (EC) 726/2004 [286. 287,288, 289, 286, 287, 288,
289]

Safety and long-term risk assessment

Long-term effects of Al therapy-associated risks must be carefully
evaluated. Pre-market testing runs from nonclinical trials targeting
safety assessment through to clinical trials for safety and efficacy.
Preclinical testing is limited and focused on cell and animal studies.
Animal studies evaluate carcinogenic, reproductive, developmental,
and mutagenic potential as well as potential effects on immune
function, neurobehaviour, and developmental neurotoxicity. Concerns
arise with viral vector or gene therapies, especially with long-term
persistence in the body, potential toxicity in the treated population, and
spread to local and distal populations. Post-market surveillance is the
only way to capture long-term effects of these strategies. Approaches
must follow principles similar to those of the clinical trial period.
Vulnerable groups, such as pregnant women, infants, and immune-
compromised patients, must be studied in depth. [2%0. 291, 292, 293]

Biological therapy observations turn to hosts and bacteria. Any
therapy is regulatory status-changing for the (host) person-the treating
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doctor must consider their usual obligations when applying Al-guided
therapy to potentially vulnerable groups. Intensive correspondence
with external experts to assess the risks of assigning persons to atypical
therapy is essential. This same obligation is present in relation to the
treatment of children, especially babies, and when mothers in the last
trimester of pregnancy, infants, or immunocompromised persons enter
a trial.

Public trust and societal implications

Support for and acceptance of Al-guided microbiome-based
innovation will ultimately depend on public trust. The engagement of
stakeholders in any service, including those applying Al in human
health, disease diagnostics, and treatment, is essential. It is therefore
crucial to involve professionals, scholars, and citizens from different
religious faiths, social and cultural groups, and academic disciplines in
discussions and media talk shows, led by credible scientists who are
able to present the potential benefits, risks, and societal implications of
this technology.

Responsibility for the conscious design, implementation,
monitoring, and regulation of Al-based, microbiome-guided service-
delivery systems remains with the scientific community. Its primary
objective must be to allow all aspects of civilization that are dependent
on health to be maintained, optimized, and sustained with minimal risk
of serious hazards and rapid development of effects that may seriously
endanger life or civilization. Remaining risk that may be unacceptable

from a social point of view must be regulated at the level of the society.
[21, 294, 295, 296]
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Chapter - 15

Clinical Translation and Personalized Medicine

The clinical translation of Al-driven microbiome interventions requires
careful trial design to ensure the safety and efficacy of these therapies.
Well-defined clinical endpoints, randomization, and subgrouping
criteria are essential for obtaining interpretable results, and patient
stratification during trials can help generate a wider range of Al-
proposed therapies with different compositions tailored to individual
patients.

To aid the transition of microbiome-based interventions into
routine medical settings, robust integration and communication
pathways with healthcare providers are needed. Reimbursement
strategies for therapies should be considered, and the use of open-
source platforms and applications is encouraged to facilitate access for
any interested party. A thorough assessment of the economic viability
of these technologies is crucial, and careful consideration of all
necessary actions, procedures, and resources required to meet
regulatory demands will help circumvent potential roadblocks during
implementation.

The clinical trial design for Al-driven interventions focuses on
determining the safety and efficacy of patient-manipulating consortia,
while stratification of patients in the studies helps generate a wider
array of therapy candidates for the Al engine. Both the actual prediction
of therapies and their validation through clinical trials are also
essential. Several types of trials, endpoints, and stratification criteria
can be used to investigate and validate the different proposed
intervention categories, such as probiotics, prebiotics, synbiotics, and
postbiotics.
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In a personalized approach, during therapeutic development and
testing for patients affected by possible immune disorders, immune-
related medications in the market, their effect profiles, and subsequent
microbiome alterations can be used to implement an Al-guided design
that further personalizes the patient treatment. This approach increases
the microbiome- and disease-related knowledge in Al models, enabling
the generation of other therapies for stratified groups.

Microbiome-based interventions are expected to be integrated into
public health systems within specific group health programs assisted
by wearable technology, where monitoring health state information of
multiple patients with Al can warrant information about different
health states of the population, and as a consequence facilitate pattern
detection. This provides a feedback control loop between the health
state detected in the population, and their influence on the population
microbiome, increasing the chance of success of the proposed
interventions or recommendations.

Finally, as future perspectives, the safety of any of the predicted
therapies should undergo clinical trials, but also the overall Al analysis,
including the hypothesized population responses, should become part
of clinical science and human health, integrating predictions with

disease heterogeneity, proposed causes and prevention measures. 297
298, 299, 300]

Clinical trial design for Al-microbiome therapies

Clinical studies to assess the safety and efficacy of next-generation
microbiome-targeted interventions guided by artificial intelligence
must be designed with sufficient statistical power and robustness. All
trials should have a secondary aim to determine the relationship
between microbiome composition or function and treatment response,
enabling stratified analyses of treatment efficacy or toxicity.

A rigid parallel group design with treatment versus placebo is
appropriate for most trial endpoints, including changes in clinical
biomarkers, quality of life, and, importantly, incidence of the primary
disease. Sufficient baseline observations should be evaluated to support
predictive modeling of secondary disease onset events and enrichment
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of patient groups likely to benefit from treatment. When earlier clinical
intervention is justified, a placebo-controlled randomized withdrawal
design with relapsing patients receiving treatment after experiencing
an exacerbation can counterbalance risks and reduce costs. An
alternative adaptive trial design incorporating interim analyses can
withstand greater between-group heterogeneity and accounts for likely
alterations in treatment effect over time.

Al prognostic and predictive models enable investigations of other
microbiota-related factors and the use of enriched groups of “super
responders” or raditional trial designs involving treatment versus
placebo. Further, Al-driven approaches can identify unexpected
adverse toxicological events and potential biomarkers of drug-induced
patient sensitivity, contributing to greater patient safety and more
reliable clinical evidence. (0% 302 303, 304]

Patient stratification and treatment personalization

Are crucial for designing efficient microbiome-related therapies.
Individual differences in microbial communities can affect the onset or
modulation of immune disorders before their clinical detection. These
observations suggest that microbial profiles in a defined population
both predict disease development and are linked to food preference,
physical activity, and circadian rhythm. To leverage these
relationships, microbiome profiles should be routinely measured
before clinical detection of immune disorders, and links in both
directions considered, prompting the need to carefully define
subpopulations during training of predictive models. Empirical
validation of their ability to delineate patient subgroups allowing for
distinct  pathogenic  mechanisms  would  further  enhance
implementation.

Clinical benefits arise not only from achieving a reliable distinction
among subpopulations but also from subgroup-specific anticipation,
prevention, and treatment of disorders. External longitudinal cohorts
can facilitate detection of patients with immune disorders prior to their
OKT3 clinical diagnosis. Age-specific patterns would support the
identification of  microbiome-based interventions targeting
physiological or clinical effect (0% 306, 307],
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Integration into healthcare systems

Requires the development of a workflow establishing the need for
the intervention, a patient stratification and recruitment step, effective
remediation, follow-up, and a reimbursement model. Integrating
advanced analysis of the microbiome into healthcare systems can be
achieved by establishing a division of the healthcare system
responsible for continuously monitoring large populations of healthy
individuals for changes in microbiome composition and function.
Longitudinal studies have shown that dysbiosis in healthy individuals
is usually absent for long periods of time, and, when present, may be
reversible through diet or lifestyle changes, thus making the time
window beneficial for early detection of disease and targeted
preventive action. Such a monitoring scheme would be far easier and
less expensive than testing everyday bodily fluids for the myriad of
biomarkers explained above. Monitoring data could also guide healthy
individuals when purchasing new diets during their lifetime.

Digital health platforms that use personal data from wearables and
biosensors would be equipped to send alerts to individuals in need of
further assessment. A closed-loop system could, for example, send a
specific set of questions, offer microbiota-modulating interventions,
recommend a certain diet, and, provided things still remain abnormal,
redirect the individual to an appropriate medical professional - all in
near real time. Special mobile health platforms helping patients with
chronic conditions using Al chatbots or nurses have been developed
and could be adopted for this purpose as well. Major concerns,
particularly with these systems, remain data protection. Personal health
information must always be kept confidential and secure. The user
should have complete control over the data and be able to decide what
to share, with whom, and for what purpose. 208 309 310.311]

Cost-effectiveness and accessibility

The economic evaluation of Al-enabled microbiome therapies
indicates that smartphone-compatible health systems providing
personal microbiome feedback could measurably change participants'
health at relatively low societal cost. Key drivers of cost-effectiveness
include the marginal cost of monitoring, the sustained level of behavior

Page | 77



change and its associated health gain, and the increase in detection of
adverse health events related to the microbiome. Given the growing
interest in predictive medicine, the modest cost of providing continued
monitoring, and the precursor development of expansive databases of
population-wide enterotypes, the proposed framework can be extended
to other predictive medicine domains.

Closing the cost gap between countries with different levels of
wealth will require innovative research that embraces technological
advances in miniaturization and sensor design. The delivery of Al-
guided microbiome diagnostic tests could also represent an attractive
business case for traditional health players. Public insurance schemes
covering the costs of diagnosis and treatment using these tests could
help the technology reach large populations in developing countries
and be beneficial for the industry. 312 313, 314,315]

Barriers to clinical adoption

Barriers to the clinical adoption of Al-guided interventions to
restore intestinal immune homeostasis and support the prevention of
eczema and other immune disorders remain. Processing and integrating
heterogeneous data types necessitate extensive technical expertise,
which is typically unavailable in hospitals, undermining the world-
wide implementation of the proposed predictive modeling pipelines.
Furthermore, when personalized systems are developed, even control-
matched populations are relatively dissimilar. As most of the factors
associated with the occurrence of diseases that are clearly linked to
other factors are relatively unchanging, it is possible that the
generalizability of these systems could be improved by developing
separate components for each populations, reducing both the
complexity of the input to the models and any noise that would be
generated by keeping the subject groups balanced.

In addition, the procedures tend not to be simple: sample sizes can
be high, requiring expensive screening tests, and the clamp approaches
used to develop prediction equations are often complex and time-
consuming, increasing the logistical and cost burdens of implementing
these procedures for real-time applications. Other approaches-such as
machine learning models-that use body temperature and accelerometry
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data-collected in a standard manner-hold greater appeal. These
procedures are normally simple and low-cost, allowing for large
sample sizes while providing sufficient information to detect the diet-
microbiome-immune relationships. 326 317. 3181
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Chapter - 16

Future Perspectives and Global Health Impact

Next-generation Al-driven and microbiome technologies will
empower preventive medicine and the management of overall health.
Continuous analysis of personal and population-level data from
wearables and biosensors will help improve diet and lifestyle, reducing
the risk of disease development and progression. Al-supported
development of personalized diets and real-time microbiome
interventions will further decrease disease risk-particularly in sensitive
groups such as infants-and improve vaccine effectiveness. The data-
driven design of safe, efficient microbiota-targeted therapies for
chronic diseases will enhance clinical outcomes. Widespread
applications will help reduce the excess burden of disease in vulnerable
populations. Maintaining global microbiome diversity and health will
promote the prevention of future pandemics.

Next-generation Al and microbiome technologies must support
global health goals: enabling preventive medicine, prolonged healthy
aging, reduced risk of chronic disease, and attenuated pandemic
burden. Data from wearables, biosensors, and other sources will inform
personalized dietary and lifestyle recommendations for healthy risk
group stratification. Continuous, real-time sampling of microbiome
shifts will underpin feedback-controlled interventions, maximizing
effort-reward ratios. Early-life disturbances can be repaired using
microbiome-modulating strategies, increasing tolerance and inducing
systemic health. Al-optimized microbiome-directed management of
chronic diseases will produce long-term health improvements and
accelerate innovations in the field. Addressing microbiome health
inequalities among populations will promote overall resilience against
future pandemics.
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Next-generation Al and microbiome technologies

The next generation of Al and machine learning models will
include various continuously evolving fields. This development
involves a combination of different systems as well as instruction from
the users of the Al systems for further customization. As shown by
Huang Male et al., the latest image-generation Al can accept both
visual input and language-based input, creating a new multimodal era
of Al models. Furthermore, the latest ChatGPT version allows users to
accept voice inputs to produce answers. Enhancing the capabilities of
existing Al models will help meet the needs of the users. By combining
the latest vision research, multimodal models will continue to advance.
Models that can provide commentaries on videos will also be
developed. In the future, research will focus on learning more about
humans, participating in tasks, compiling summaries, and deep
learning.

Al and machine learning are becoming integral parts of the
research process. Al systems, which consist of artificial neurons and
their connection weights, rely on the quality and quantity of the data
they are trained on for their performance as well as on the model
architecture and objective function. Well-designed and trained Al
models can obtain insights, hypothesis-generating clues, and hidden
underlying principles. Furthermore, these sources of information can
be monitored interactively and validated experimentally.

Preventive medicine and healthy aging

By integrating with data from wearables and biosensors, Al models
can support continuous health monitoring, dyadic coach-patient
interaction, and feedback-controlled interventions. Patients wearing
continuous sensors and feeding data into a digital health platform can
receive alerts for potential health abnormalities, such as elevated
glucose levels, by synchronizing digital health resources such as cloud
computing. A smartphone app uses the developed model to interpret
and visualize data for the patient and physician. Al models may control
modulation of the microbiome and other health parameters by
wearables.
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Telemedicine enables remote consultation and interpretation of
biodata, which may not be easily interpretable by a non-expert. The
recommendation system approves actions requiring follow-up and
indicates potentially dangerous situations requiring hospitalization.
Adherence to lifestyle and diet recommendations determined by the
integration of wearables, microbiome data, and other individual health
information can be assessed and visually presented to the patient.

Additional recommendations can suggest interventions to
modulate the microbiome or other parameters. Microbiome modulation
and other interventions can also be prescribed to prevent identified or
anticipated disease states detected by Al. Longitudinal development of
the microbiome and its influence on other parameters may enable the
design of timed feedback that allow interventions when such symptoms
appear. Behavioral, dietary, environment, health monitoring, and
microbiome data can be fused to create new features for prediction
models.

Global microbiome diversity and equity

Microbial world-wide diversity supports human health. Al-based
applications should ensure inclusion and serve humanity.

More than 3000 million years of evolution led to the global
Holobiont. An imbalance can increase susceptibility to various
diseases, which can be reduced or avoided. Recent progress in
Biomedical Sciences, particularly Al technology, enables an
unprecedented understanding of the human holobiont. The microbiome
can provide insights into a variety of diseases, opening the search for
new microbiome-based preventive medicine: The Instagram of
Appropriation. The recognition of the potential for therapeutic
interventions forms the basis for Al-driven methods for developing
therapeutic approaches that facilitate this process. But care is needed
to address the imbalances and not simply extract and appropriate, as
such unbalanced exploitation can have catastrophic consequences.

Equitable access to modern technologies is required to sustainably
ensure the diversity of microbial infrastructure and its role in sustaining
human well-being. Disruption of the diverse structure would make
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mankind increasingly more vulnerable. Examination of the effects of
impairing the infrastructure diversity is urgent: targeting the
appropriate diversity metrics would enhance potential application. The
growing microbiome research domain must be translated into
preventive medicine programs that ensure an ever-decreasing
likelihood of catastrophic pandemics.

Pandemic preparedness and immune resilience

A proactive approach to enhancing population immunity and
resilience against future pandemics may help reduce disease incidences
and associated healthcare burden. As repeatedly demonstrated during
the COVID-19 pandemic, zoonotic and emerging infectious diseases
are unpredictable and a continual global health threat. Supporting
immunological preparedness through first-principle designs of
microbiome-modulating strategies is therefore a timely task. Many
pathways and factors linking the microbiome with risk of infections
and vaccination response in children and adults have been proposed.
Exploring microbiome signatures predictive of clinical infection and
serological responses to vaccinations could provide a competent
framework for population-level engineering of tolerance-inducing and
anti-infective microbiomes that strengthen immune readiness.

Building collective population immunity before disease outbreaks
may improve preparedness without resorting to routine vaccination
campaigns or chemical adjuvants boosting the immune response, with
long-term benefits in reduced incidence and severity of chronic
diseases. Al-assisted identification and subsequent longitudinal
population studies of microbiome signatures predictive of clinical
infections, immune tolerance, and response to vaccination will guide
design of intervention strategies targeted toward the associated
pathways. During such explorations, emphasis should be given to the
timing and safety of potential interventions, and follow-up studies
should address persistence and long-lasting effects beyond completion
of the specific modulation.

Roadmap for future research and innovation
Future developments in Al and microbiome research should
prioritize early clinical trials in Al-based and microbiome-targeted
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medicine, with a focus on immune and chronic disease prevention for
healthy populations. The generated pipelines should enable the
discovery of novel intervention candidates targeting risk factors for
major diseases, particularly respiratory and metabolic disorders. A
multidisciplinary global effort should aim to gather a diversity of
healthy microbiomes and their associated information. These
populations should serve as search spaces for Al algorithms during the
design of preventive intervention strategies and healthy aging supports.

The initiatives should consider the preventive potential of
nutrition, circadian rhythms, environment, and lifestyle, aiming to
optimize their contribution to immune resilience. Microbiome-induced
risk reduction strategies for cardiovascular and neurological diseases
should be identified through dedicated pipelines. Major known defense
measures against future pandemics should be effectively supported in
an extended manner. The overall objective is to create a proactive and
health-promotion-focused clinical and research environment in
combination with the knowledge gained from prior pandemics.
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Chapter - 17

Conclusion

Recent advances in artificial intelligence (Al) provide opportunities for
novel exploration or resolution of long-standing scientific questions,
including the inherent complexity of the human microbiome and its
connections with the host immune system and the development of
chronic diseases. Microbiome data-generation technologies have
expanded exponentially in recent years and are expected to continue to
grow. By harnessing these new approaches and integrating them with
Al techniques, powerful predictive models could be built to identify
how the microbiome influences the immune system and risk of chronic
disease throughout the human lifespan. Equipped with such
knowledge, it should be feasible to engineer microbial ecosystems to
support immune health in individuals and populations, thus reducing
the burden of immune disorders and contributing to the prevention of
other chronic diseases.

The human microbiome has a central role in shaping individual
immune responses and influencing the risk of developing immune-
mediated disorders such as allergies, asthma, and autoimmunity. A
variety of lifestyle and environmental factors modify the microbiome,
and targeted probiotic, prebiotic, synbiotic, or dietary interventions
during early life hold promise for lowering the risk of these diseases.
Furthermore, the microbiome can modulate vaccination responses and
the development of immune tolerance, with potential implications for
vaccine design and implementation. Al modeling approaches should
enhance understanding of the interactions between the immune and
microbial systems during healthy and abnormal development and
enable the engineering of optimal immune-supporting microbial
ecosystems.
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