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Abstract 

 

Prevention of immune and chronic diseases represents an important 

public health objective. The human microbiome directly influences 

immune system development, and its modulation represents a 

promising avenue for disease prevention. Emerging artificial 

intelligence approaches facilitate large-scale exploration of 

microbiome-disease associations and generation of novel hypotheses. 

Prediction models based on longitudinal population-level data enable 

timely detection and stratification of disease risk. Evidence-based 

strategies are suggested for prevention of allergic diseases in 

childhood, modulation of vaccine responses, risk reduction for 

metabolic disorders and diabetes during adulthood, and enhancement 

of immune tolerance. 

A population-based cohort study with periodic sampling can 

support longitudinal modelling of the microbiota-disease relationship 

and capture disease-specific alterations on a physiological timescale. 

For immune disorders, microbiome-targeted interventions may focus 

on the early-life period to ensure safety and harness a potentially 

greater effect on healthy immune development. Candida, Clostridia, 

and Atopobium are associated with the risk of developing asthma and 

inhalant allergies in childhood. Two interrelated hypotheses-reduced 

induced tolerance in the presence of microbial pathogens and a lack of 

consistent immune challenge during early-life development-are central 

to this expanded view of allergic disease aetiology. 
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 Chapter - 1 

The Human Microbiome and Its Role in Health and 

Disease 

 

 

The interplay between the host and their microbiome is understood as 

microbiome-hoste interaction [1]. When a mutualism is established, the 

responsible microbes are seen as commensals, acting synergistically 

with the host immune system. It is reasonable to assume that the host 

interacts closely with all the associated microbiome species, as 

members are situated at mucosal surfaces that represent the first contact 

point for invading pathogens. Because of this, members of the 

microbiota can directly stimulate essential innate immune pathways. 

The host adapts to its microbiome by food exposure, leading to 

microbiome evolution into benign state revealing that human diet 

shapes their microbiome and thereby influences the innate immune 

system during pen and postnatal periods. Pattern recognition by innate 

immune cells stimulates the expression of barrier function associated 

proteins, such as the synthesis of mucus, mucins, secretory 

immunoglobin A (sIgA), cathelicidin, beta-defensins, lysozyme A, 

psoriasin and blood anti-microbial peptides. It also promotes the 

epithelial production of secreted small anti-microbial peptides 

generated by Paneth cells, such as the alpha-defensins relied upon to 

maintain intestinal health. 

A multi-omics analysis on how the gut microbiota dictates innate 

immune development and function, revealing that microbiota 

composition (i.e. abundance of Lactobacillus, Oscillibacter, or 

Coprococcus) can determine gut mucosal layer thickness and its 

glycosylation pattern via controlling the transcriptional activation of 

MUC2. The Gram-positive bacteria Micrococcus luteus and the Gram-

negative bacteria Escherichia coli, are presented as probiotics able to 

modulate growth rates of Burkholderia cepacia complex species, 
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enhancing their sIgA-inducing potential. Over an experimental 

timeline, pathogen-free mice exposed to an early-life supply of M. 

luteus developed a sIgA response against this bacterium [1, 2, 3, 4].  

Composition and diversity of the human microbiome 

The human microbiome encompasses a wide variety of prokaryotic 

and eukaryotic microorganisms, comprising bacteria, viruses, archaea, 

fungi, and protozoa. Beyond the genetic functions of the microbiome, 

its taxonomic and functional composition are also determinants of 

health. A wealth of disease models and human cohorts have shown that 

reduced richness and shifts in composition are associated with diverse 

immunological and metabolic diseases, cancer, or infections. These 

associations potentially reflect cause-effect relationships or risk 

associations suggesting microbial signatures for early diagnosis. Such 

signatures can be generated from high-dimensional microbiome data 

sets through various approaches, but deep learning represents an 

efficient way of training classifiers with increasing performance and 

enabling the identification of microbiome-disease associations beyond 

a supervised fashion. Other advanced approaches have also put forward 

disease signatures based on biological significance for disease risk 

assessment, detection, stratification, or prediction across cohorts and 

populations. In addition, the identification of associations between the 

microbiome and specific immunisation responses, and the 

incorporation of metagenomic data in prediction experiments for 

childhood allergies and asthma correlate well with children’s health-

disease trajectory studies. 

Microbiome studies typically focus on the taxonomic diversity and 

composition of the microbiota at a given time point, giving less priority 

to longitudinal data sets that might enable the modelling of the 

dynamics of dysbiosis development, duration, and recovery related to 

infection incidence. Gaps in such temporal analyses can partly be filled 

using machine learning methods with individual microbiome profiles 

at different time points, resulting in an integrative model that predicts 

future alterations of disease- and health-associated microbiome states 

while accounting for time as an important factor and helping to detect 

specific disease signals. Despite the recurrent signals linking 
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microbiome composition and health, validation of the identified 

signatures remains paramount, especially if they are considered 

candidates for future clinical routine or used for personalized 

prevention initiatives. Combinations of machine learning with 

literature mining can play a key role in uncovering overarching 

principles regarding the stability of microbial signatures across diverse 

health-related conditions or the reliability of dietary-microbiome 

relationships [5, 6, 7, 8].  

Microbiome development across the human lifespan 

In microbiome research, the human life cycle is typically divided 

into the following stages: prenatal, infant, early childhood, late 

childhood, adolescence, adulthood, and aging. Despite being a 

continuous process, it is often simplified into discrete stages that are 

each characterized by the dynamics of key environmental factors. 

These include mode of delivery, feeding methods, introduction of 

dietary solids, weaning practices, transition from childhood to puberty, 

sexual maturation and adulthood, and old age. Such an approach aids 

reference dataset design and construction of Life Cycle Models for 

Time-Series Analysis. 

The microbiome of a healthy adult is fairly stable over time, 

although changes may occur in response to stressors, including pain, 

anxiety, gastrointestinal infections, and antibiotic administration. 

However, an assessment of microbiome stability must also consider the 

temporal scale of the investigation. A study of younger adults (aged 

19-30 years) found that, despite being stable over time, community 

composition could vary significantly during a routine sampling period 

of three weeks. The concept of microbiome stability must also account 

for inter-individual variability. Indeed, while the microbiomes of two 

healthy (non-diabetic) individuals may differ substantially, they may 

respond similarly in terms of beta diversity to environmental 

perturbations, despite the absolute abundance of the differing 

communities remaining unaltered [9, 10, 11, 12].  

Host-microbiome interactions 

Together, the microbiome and the organism interact through 

various signaling pathways. The microbiome modifies the training of 
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the immune system, while also offering supplementary metabolic 

activity. The production of a variety of nutrients, stability against 

pathogen colonization, and metabolism of xenobiotics are both 

facilitated by the gut microbiome. Through factors that modify 

mucositis and intestinal permeability, and thus the systemic 

translocation of substances produced by the microbiota, the microbiota 

likewise affects the blood-brain barrier. A reduction or deficiency in 

diversity and the abundance of the main phyla of the gut microbiota 

during aging lead to alterations in these functions and pathways. 

The microbiota play significant roles in the development and 

maturation of the immune system through three different processes:  

i) Education of the innate immune system. 

ii) Education of the adaptive immune system. 

iii) Training of thymic T cells in developing immune tolerance.  

The gut microbiota can differ according to climatic zones and 

geographical areas. Some of these alterations may lead to disease. 

Chronic inflammatory conditions, as observed in obesity and type 2 

diabetes, are associated with microbiota inflammation-induced 

dysregulation [13, 14, 15, 16].   

Dysbiosis and disease associations 

Evidence from metagenomic and metatranscriptomic studies 

indicates that the microbiome is a significant risk factor for and/or 

contributes to the pathogenesis of numerous immune and chronic 

diseases: in particular, type 1 and type 2 diabetes, allergic diseases, 

inflammatory bowel disease, neurological disorders (such as multiple 

sclerosis), cardiovascular diseases, autoimmune diseases, cancer, 

obesity, metabolic syndrome, non-alcoholic fatty liver disease, non-

alcoholic steatohepatitis, and chronic kidney disease. Changes in 

microbial diversity appear to predispose individuals to the 

development of some immune and chronic diseases; in contrast, other 

diseases appear to correlate with the abundance or depletion of specific 

taxa within the microbiome, suggesting a more direct role in their 

pathogenesis. 
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Nonetheless, identifying association patterns is only the first step 

in understanding the relations between the microbiome and disease. 

Associations should ideally be established over time and should 

include both microbiome data and corresponding disease samples from 

the same cohort. In addition, immune and chronic disease-associated 

changes in the microbiome still need to be probed experimentally to 

establish causation. Therefore, the data available to support claims of 

causation may still be limited for many immune and chronic diseases 
[17, 18, 19, 20].  

Microbiome as a therapeutic target 

The potential of the microbiome in therapy is vast. Alterations in 

microbiome diversity and/or composition (dysbiosis) are linked with 

many diseases, including metabolic syndrome, obesity, diabetes, 

inflammatory bowel diseases, colorectal cancer, allergies, and asthma. 

However, convincing evidence for causal roles-beyond association-

remains scarce. AI can help address this knowledge gap and specify the 

conditions under which the microbiome may serve as a therapeutic 

target or biomarker. Three main strategies are possible:  

1) Modulation of dysbiosis more broadly. 

2) Restoration of specific, prioritized, pre- or postdysbiotic 

microbiomes. 

3) Development of deleterious dysbiosis (abnormal microbiota) 

or disease-associated microbiome dysbiosis in animal models 

(mice, nonhuman primates) or human cohorts and 

identification of the microbiome signature. The aim of these 

approaches is to provide biobridging. 

Recent studies have explored the design of predictive AI models of 

chronic diseases based on the microbiome and also the engineering of 

the microbiome for healthy aging. AI has facilitated the specification 

of dietary patterns associated with common food groups that modulate 

the microbiome and contribute to disease prevention. There is also 

emerging interest in using biosensors and wearables to facilitate daily 

health monitoring. Of particular importance, the timing of 

interventions during the critical windows of immune system 
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development or remodeling for early-life modulation or tolerance 

induction (i.e., delivery of potential allergy-resolving microbes to at-

risk populations) has become increasingly acknowledged. Moreover, 

restoration of disease-specific microbiota or precise modulation of 

normal healthy ecosystems also holds great promise [21, 22, 23, 24].  
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Chapter - 2 

Immune System-Microbiome Interactions 

 

 

The innate immune system uses pattern recognition receptors (PRRs) 

to detect danger signals in the gut and generates immune and detection 

signals affecting local microbiota composition and function. PRR 

signaling is critical for maintaining intestinal barrier integrity. The 

microbiota produces beneficial antimicrobial peptides (AMPs) that 

help regulate intestinal homeostasis but are reduced in conditions 

involving high intestinal permeability or microbiome dysbiosis. The 

microbiome is also involved in adaptive immunity education and 

tolerance. Diversity and composition of colonic Tregs correspond to 

specific bacteria. Sources of microbial signals shaping immune 

education encompass the gut microbiome, lactate, serum, and cultured 

gut-resident bacteria. Dysbiosis can thus alter immune signaling and 

tolerance pathways, potentially leading to chronic inflammation, 

increased pathology risk, and decreased vaccine effects. 

Autoimmunity, allergy, and autism are examples of altered tolerance-

associated conditions. 

The microbiome influences the production of various metabolites 

that play crucial roles in the immune system. Butyrate modulates 

macrophage functions, and alters the number of T- and B-cell 

populations in the kidney and spleen. Propionate stimulates CCL20 

production in human intestinal epithelial cells. Tryptophan metabolites 

affect the balance of T- and B-cell subtypes through the AHR and IDO 

pathways, and enhance macrophage polarization toward M2. Dysbiosis 

alters pathways of tryptophan, butyrate, and propionate metabolism 

and receptor signals, and can modulate various IFN-γ- and IL-12-

related inflammatory pathways. Th17/Treg imbalances promote 

multiple autoimmune disorders, but this imbalance can be corrected by 

Microbacterium sp. 2C4. Reduced Treg-inducing signals are associated 
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with elevated IL-17A in patients with systemic autoimmunity. 

Dysbiosis may alter immune-associated pathways in COVID-19 

patients, and patients with severe disease show a significant 

inflammatory signature involving Th17 cells [25, 26, 27, 28].  

Innate immune modulation by the microbiome 

The first line of defense, the innate immune system prevents 

pathogen invasion and controls infection severity. Composed of 

physical barriers (e.g., skin, mucosal membranes), immune cells (e.g., 

macrophages, dendritic cells, neutrophils), soluble mediators (e.g., 

cytokines, chemokines, proteins), and lipid membranes, innate 

immunity initiates immune responses through pattern recognition of 

pathogens, regulation of adaptive immunity, and infection control. The 

human microbiome contributes to all aspects of innate immune 

function. 

The skin and epithelial surfaces of the gut, lung, and other tissues 

serve as physical barriers against microbiota and pathogen invasion. 

Composed of epithelial cells and the underlying extracellular matrix, 

these surfaces are regularly exposed to commensals. Microbial 

metabolites and certain pathogens induce expression of tight junction 

proteins (e.g., claudin, occludin) that promote tight junction formation 

across epithelial layers. The memory component of innate immunity is 

mediated by the education of trained innate immune cells, which 

respond more rapidly and vigorously to secondary infections. Trained 

immunity is believed to be mediated in part by metabolites (e.g., 

butyrate) produced during microbiome fermentation of indigestible 

carbohydrates (e.g., dietary fiber) in the gut [29, 30, 31, 32].  

Adaptive immune education and tolerance 

The microbiome modulates not only the development of innate 

immune responses but also educates the adaptive immune system and 

promotes tolerance to food and environmental antigens. Underlying 

mechanisms include the production of microbial-derived metabolites 

and direct stimulation of cognate receptors, both involved in shaping T 

and B cell responses. Dysbiosis affects the tolerance-inducing 

pathways of pregnancy and milk composition, disturbing the 



 

Page | 9 

equilibrium between pro- and anti-inflammatory responses. 

Microbiome-driven processes are critical for optimizing vaccine 

responses and preventing autoimmune diseases. 

Mature, functional T cells and immunoglobulin-producing B cells 

are necessary for the adaptive immune response. Segmented 

filamentous bacteria (SFB) are among the few characterized 

commensal microbes able to induce Th17 cell differentiation and 

promote antibody class switching in IgA+ and IgG+ B cells. SFB 

colonization increases the susceptibility to experimental autoimmune 

encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). 

While Th17 cells contribute to mucosal defense and host protection, a 

dysregulated or exaggerated Th17 response is a hallmark of various 

autoimmune and inflammatory disorders. Mucosal IgA production 

contributes to immune exclusion and neutralization of invading 

pathogens. The microbiota directs the education of intestinal IgA-

producing B cells by regulating TGF-β and retinoic acid-producing 

dendritic cells. Mucosal infection with pathogens such as Helicobacter 

pylori or cytomegalovirus mediates a fecal IgA response and shapes 

the composition of the IgA-coated fecal microbiota [33, 34, 35, 36].  

Microbial metabolites and immune signaling 

Microbial metabolites produced by members of the human 

microbiome can directly signal cells involved in the host immune 

response. Representative metabolites include butyrate, propionate, and 

tryptophan metabolites such as indole, indole-3-acetic acid (IAA), 

indole-3-ethanol, and butyrylcoenzyme a (butyryl-CoA). Activation of 

targets such as immunoglobulin A (IgA) secreting B cells, T helper-17 

(Th17) cells, forkhead box P3 (FoxP3+) regulatory T cells, dendritic 

cells, toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), G 

protein-coupled receptor 41 (GPR41), G protein-coupled receptor 43 

(GPR43), hydroxycarboxylic acid receptor 1 (HCA) and AhR by these 

metabolites has an important role in modulating both innate and 

adaptive immunity. Butyrate promotes the differentiation of Th17 cells 

as well as the production of IL-10, IFN-γ, and IL-4 by T cells. In Gpr41 

rats, the secretion of IgA decreased dramatically and Lactobacillus 

reuteri populations were reduced in the intestines. Propionate is 
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involved in the differentiation of naïve T cells into Th1 or Th2 cells by 

upregulating the expression of T-bet or GATA3, respectively. 

Changes in microbial flora composition and diversity are closely 

related to the occurrence of autoimmune diseases, and the imbalance 

of intestinal microorganisms can lead to alteration of the composition 

and concentration of microbial metabolites. According to the principle 

of "excess causing poison", the excessive production or deficiency of 

certain metabolites during disease development can accelerate the 

inflammatory response through direct or indirect effects on immune 

regulation. Metabolites act on immune cells to further regulate the 

intestinal immune microenvironment, resulting in an imbalance of the 

intestinal immune response and contributing to the pathogenesis of 

autoimmune diseases [37, 38, 39, 40]. 

Inflammation, autoimmunity, and immune imbalance 

Dysbiosis predisposes to an inflammatory state. A shift in the loss 

of diversity or abundance of certain populations triggers cascades of 

inflammatory molecules such as inflammatory cytokines, chemokines, 

and T helper-17 (Th17) cells. These markers are linked to chronic 

diseases associated with autoimmunity in patients suffering from 

coeliac disease, inflammatory bowel disease (IBD), basilophilic 

asthma, systemic lupus erythematosus (SLE), Sjögren syndrome, 

multiple sclerosis (MS), and rheumatoid arthritis (RA). Moreover, 

juvenile idiopathic arthritis is associated with reduced α-diversity in the 

gut microbiota. Longitudinal studies show that a decrease in microbiota 

diversity and altered microbiota composition precede the onset of 

T1DM in genetically susceptible children. Interestingly, decreased 

levels of the oral microbiome genus Haemophilus in children correlate 

with an increased risk of subsequent allergies, asthma, or eczema 

during the first five years of life. The relationship between dysbiosis 

and high susceptibility to infections in patients with MS appears to be 

also associated with immunological dysregulation. 

Specific bacterial populations play important roles in inflammation 

and autoimmunity. Enterobacteriaceae, especially Escherichia and 

Shigella, are enriched in patients with autoimmune diseases. The levels 

of the divided family Mycoplasmataceae, genus Mycoplasma, family 
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Enterobacteriaceae, and genus Escherichia are enriched in patients with 

active SLE. A higher ratio of Enterococcus to Lactobacillus and 

reduced butyrate production in the gut microbiota have been implicated 

as risk factors in RA. Oral and gut microbiota from patients with 

autoimmune diseases exhibit higher proportions of pathogenic species, 

such as Selenomonas, Methanobrevibacter or Enterobacteriaceae, and 

a lower prevalence of immune-protecting bacteria. [41, 42, 43, 44] 

Immune biomarkers linked to microbiome changes 

Microbiome alterations have been associated with various 

immune-mediated conditions, yet linking specific dysbiosis 

phenotypes to the development of detectable disease-associated host 

response patterns has proven challenging. Immune biomarkers 

represent a potentially effective approach for early disease detection or 

risk stratification because they can appear earlier than classical disease 

manifestations. During the last twenty-five years, a variety of immune 

markers have been connected with alterations of the intestinal or 

respiratory microbiota, especially in chronic inflammatory disorders 

like inflammatory bowel disease, asthma, or autoimmune diseases, 

highlighting the modulatory potential of the microbiome and its 

association with the immune advance of these disorders. A systematic 

review identified such microbiome-associated immune markers and 

proposed an integrative validation strategy to ensure that proposed 

associations are sufficiently supported by existing literature. 

Detecting dysbiosis or loss of diversity is insufficient for 

establishing microbiome-disease relationships, especially for immune-

mediated diseases, where host immunity can respond before overt 

clinical symptoms. Several studies have associated certain immune 

factors with specific microbiome signatures, including altered relative 

abundance of key taxa or specific phylogenetic or functional dysbiosis. 

Integration of these findings may provide a foundation for future 

microbiome disease-prevention studies. [45, 46, 47, 48, 45, 46, 47, 48] 
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Chapter - 3 

Chronic Diseases Influenced by the Microbiome 

 

 

The human microbiome plays a crucial role in the etiology, prevention, 

and treatment of chronic diseases, and the observed microbiome-

disease associations may aid in the development of novel preventive 

and treatment strategies. A diverse and resilient microbiome helps to 

maintain host homeostasis, while a dysbiotic microbial community 

may disturb metabolic homeostasis and promote chronic diseases. 

Advances in AI can facilitate the investigation of gaps in current 

knowledge, leading to hypotheses on preventive and treatment 

microbiome interventions that can be fully and rigorously tested. 

Chronic ailments such as metabolic syndrome, cardiovascular 

disease, central nervous system disorders, inflammatory bowel disease, 

and cancer are closely linked to the microbiome. Metabolic syndrome 

is characterized by a constellation of risk factors, including abdominal 

obesity, dyslipidemia, hypertension, and insulin resistance. Excess 

lipid accumulation in macrophages and the increased biosynthesis of 

lipopolysaccharide contribute to peripheral and central resistance to the 

action of insulin, while atherogenic dyslipidemia leads to an increased 

cholesterol ester content in hepatic cells and the deposition of lipids in 

blood vessels, resulting in a greater risk of cardiovascular disease. The 

composition of the gut microbiota appears to play a crucial role in these 

pathological changes, as dysbiosis has been associated with increased 

energy harvest from the diet, enhanced low-grade inflammation, and 

altered short-chain fatty acid production. 

Metabolic disorders and obesity 

Strong evidence links the microbiome and metabolic disorders, 

with altered diversity and composition associated with obesity, insulin 

resistance, and dyslipidemia. Specific patterns of microbiome-derived 
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metabolites may disturb metabolic homeostasis and contribute to early 

life obesity. Disease-promoting signatures can be exploited to 

predicatively model development, while directional relationships can 

be inferred with longitudinal associations. Predictive models may serve 

stratification needs but must be calibrated for population prediction. 

Obesity is a heterogeneous condition and microbiome-derived 

features can be leveraged for stratification. Using microbiome data, 

population cohorts have been subdivided into obesity-resistant and -

susceptible subgroups and prediction models established. Such 

signatures can be operated in reverse to uncover protective pathways 

or identify preventive mechanisms in related conditions. Longitudinal 

data support directionality between dysbiosis and disease progression, 

enabling identification of microbiome signatures preceded by disease 

and modeling of subsequent onset. Dynamic, temporally ordered time-

series data further elucidate developmental and causal relationships. 

Disease signatures can be considered predictive if they anticipate a 

condition before clinical onset, but generalizability remains a 

challenging and important task. 

Disease signatures may capture risk that is not reflected in the 

patient population under study, suggesting within-cohort calibration 

prior to wider application. Such a generalization strategy may not be 

trivial when using microbiome signatures to predict development of 

diseases that typically manifest within childhood, given that microbial 

composition and metabolic cross-talk undergo shifts during 

development [49, 50, 51, 52]. 

Cardiovascular and endocrine diseases 

Altered microbiota profiles and dysbiosis affect metabolism and 

contribute to the development of cardiovascular disease and 

hypertension. Microbiome-derived metabolites influence 

cardiovascular function, in part by regulating blood pressure and 

modulating cardiovascular autonomic control. Hypertension has been 

associated with an overabundance of Firmicutes and a deficiency of 

Bacteroidetes in the gut and with increased bacteria-derived 

trimethylamine and brain-derived neurotropic factors. Gut bacteria also 

affect heart rate variability, a key biomarker of cardiovascular 
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regulation. Microbial depletion accelerates the development of 

atherosclerosis and associated features through effects on cholesterol 

metabolism, the immune response, and inflammation. Dysbiosis has 

been linked with atherosclerotic plaque instability, and the structure of 

the gut microbiota may predict future atherosclerosis. Several of these 

mechanisms are also relevant in other endocrine diseases, including 

irregularities in metabolic hormone metabolism related to reproductive 

health, polycystic ovary syndrome, and prostate cancer. 

Fecal microbiota transplantation has been investigated as a 

potential therapeutic method for heart failure, hypertension, and 

atherosclerosis, and a synthetically defined four-membered bacteria 

consortium has been shown to reverse hypertension in mice. A 

microbiome-associated production of uremic toxins has been linked to 

chronic kidney disease. Chronic kidney disease is characterized by 

inflammation and subsequent changes in the gut microbiome; tyrosine 

and phenylalanine metabolism are also dysfunctional and correlate 

poorly with clinical data. Modulating the gut-kidney axis by changing 

the gut microbiome through pre-, pro-, or synbiotic approaches may 

prevent and control chronic kidney disease progression. Microbiomes 

of patients with primary biliary cholangitis display a decrease in 

microbial diversity and altered functional pathways [53, 54, 55, 56].  

Gastrointestinal and liver diseases 

The gut plays an essential role in maintaining homeostasis, and any 

alteration of the gut microbiota can have profound effects on host 

health status. Dysbiosis has been linked to several GI diseases, 

including inflammatory bowel disease (IBD), irritable bowel syndrome 

(IBS), colorectal cancer, and gastrointestinal infections. More 

importantly, gut dysbiosis has also been associated with extra intestinal 

diseases such as cardiovascular diseases, metabolic syndrome, 

diabetes, obesity, and even neurodegenerative disorders. Fecal 

microbiota transplantation (FMT), which allows for the transfer of 

stool samples from a healthy donor to patients with different diseases 

and is thought to restore gut health, has become a widely used therapy. 

More clinical data about the effects of FMT on various diseases have 

been accumulated, making it a potential treatment option for IBD and 

Clostridium difficile infection (CDI). 
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However, considerable safety concerns due to the variations of gut 

microbiota profiles among patients and donors hinder the clinical 

application of FMT. Moreover, the risk of transferring pathogens 

during FMT procedures remains an issue, and thus the use of 

synthetically designed microbial communities instead of whole stool 

transplants has gained attention. Defined-microbiota FM-also known 

as consortium FMT, is a therapy for GI and liver diseases that aims to 

replace the entire microbiota with a defined set of beneficial microbes 

or communities, in order to restore microbial function and metabolism 

while eliminating harmful taxa. This approach is considered to be safer 

than standard FMT as only a few strains in a consortium are actively 

monitored throughout the therapy [57, 56, 58, 53].  

Neurological and neuroimmune disorders 

Alterations in microbiome composition or function are linked to 

several neurological conditions. The gut-brain axis encompasses 

pathways for microbiome-mediated signals to reach the central nervous 

system, and an influence on mood and cognition is supported by 

clinical data connecting specific taxa to autism, depression, or anxiety. 

Gut microbiome perturbations also associate with neurodegeneration 

in Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease. 

Models based on fecal microbiota transplantation have evaluated 

disease impacts on microbiome structure and function. These disease-

microbiome relationships open avenues for therapeutic investigations 

aimed at restoration of commensal signaling to ameliorate the 

condition. 

Microbiome influences on neurological and neuroimmune 

disorders are shaped by signaling from the gut to the brain through the 

immune system, direct vagal innervation of the gut, microbiome-

derived metabolites reaching circulation and the enteric nervous 

system, and indirect interaction through microbiome-modulated serum 

metabolites. The overall role of the microbiota appears largely 

beneficial with respect to mood and cognitive function. However, 

noteworthy exceptions and contradictions exist, with disease-

associated microbiome changes detectable also in animal models [59, 60, 

61, 62, 59, 60, 61, 62]. 
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Cancer and immune-mediated malignancies 

A strong association exists between several types of cancer and the 

microbiome community structure and functions. Tumorigenicity can 

be promoted by microbial metabolites, such as secondary bile acids and 

specific sexual hormones, as well as by bacterial infections (S. 

Typhimurium, C. pneumoniae, and H. pylori). Conversely, dysbiosis-

related immunological factors could suppress colorectal cancer 

development. The mechanism of cancer treatment resistance is also 

related to the microbiome, as preservation of the gut microflora during 

chemotherapy mitigates the systemic toxicity of the chemotherapeutic 

agent. Furthermore, gut commensals can also modulate anti-tumor 

immunity; for example, C. itersonii enhances the activity of immune 

checkpoint inhibitors towards melanoma in mice. The various 

associations between the microbiome and the process of tumor 

development or progression are illustrated in Supplementary Figure 6. 

The gut microbiome plays diverse roles in modulating different stages 

of immune-mediated malignancies, such as head and neck cancers, via 

regulation of the immune system, production of metabolites, and 

response to therapy. 
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Chapter - 4 

Artificial Intelligence in Biomedical and Microbiome 

Research 

 

 

Encompassing every sector of research and everyday life, profound 

changes arise from powerful deep-learning language models and an 

ever-improving human-computer interface. AI and machine-learning 

approaches are sophisticated classifying or predicting systems, trained 

on demonstration datasets and repeatedly refined. In supervised 

learning, the model is presented with pairs of input features and 

preassigned targets; the goal is to predict the target for a given input. 

Unsupervised learning is applied when the target is unknown or 

nonexistent, such as clustering objects based on signal similarity, while 

reinforcement learning evaluates actions according to received 

feedback. 

Many biological signals and experimental results are now 

evaluated using machine-learning techniques. Deep learning is mainly 

applied to imaging, speech recognition, and natural language 

processing; biological discoveries are facilitated by literature mining, 

as large language models generate new insights and extract regulatory 

relationships and interpretable hypotheses. After generating the 

hypotheses, a cloud-based design loop generates and evaluates the 

experimental design to confirm or reject specific hypotheses [63, 64, 65, 66].  

Overview of AI and machine learning approaches 

Gaining insights from complex, high-dimensional, and 

heterogeneous biological data is challenging. Therefore, artificial 

intelligence (AI) and machine learning methods applied in biological 

research have rapidly advanced and diversified. Key AI-based methods 

for biomedical research are supervised/unsupervised/reinforcement 

learning models used to find relationships among variables in a defined 
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learning space and to predict responses based on novel input data. In 

supervised learning, algorithms are trained with a dataset containing 

examples along with the desired outcome and are then able to learn 

predictive models for similar new data. For unsupervised learning, 

input data do not contain the answers. Instead, the algorithm finds 

underlying structures or classifications within the data according to 

certain similar features. Reinforcement learning is trained to explore 

and learn the best actions through simulation and feedback signals from 

each attempted action, optimizing long-term return. 

Deep learning models directly learn high-level features or 

corresponding classifications from raw images or signals. Specific 

architectures, types of biological data, and evaluation metrics vary 

among applications. Convolutional neural networks (CNN) are 

designed for visual-pattern recognition to analyze 2D spatial data such 

as molecular structure images and gene expression in tissue sections. 

Generated features can be used as input for classifiers to make a final 

decision. Recurrent neural networks, a type of parameter-sharing 

architecture, are suitable for sequential data such as protein sequences 

and nucleotide sequences. Long short-term memory (LSTM) is a 

variant of recurrent neural networks designed to explore long-distance 

relationships. Transformer models represent another family of deep 

learning models based on self-attention mechanisms and perform well 

in natural language processing tasks. [67, 68, 69, 70] 

Deep learning for biological data analysis 

Deep learning models can learn from various biological data types: 

imaging data (e.g., microscopy, MRI, flow cytometry, and RNA-seq), 

multi-omics data (genomics, transcriptomics, proteomics, 

metabolomics), and signaling pathways. These models typically 

require a large number of samples but can accurately predict unseen 

molecular responses by exploiting high-dimensional signals. The 

performance of a deep learning model is usually evaluated using 

accuracy, AUROC, and AUPRC. 

In the absence of sufficient labeled data, generative models such as 

GANs and VAEs can generate synthetic data that resemble real 

biological data. They have successfully increased training data size for 
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image classification, disease subtype classification, molecular response 

prediction, cell-type reconstruction, genes prediction, and multi-omics 

integration. Domain adaptation methods have also been used to transfer 

knowledge learned from labeled data in one domain to an unlabeled but 

related domain [71, 72, 73, 74, 75]. 

Natural language processing in biomedical discovery 

Natural language processing is increasingly applied to biomedical 

knowledge extraction. The quantity and complexity of biomedical 

literature, combined with the speed of discovery, demands automated 

processing tools to complement human authorship. Unsupervised 

techniques based on large, unlabeled corpora assist in pretraining 

neural network architectures for transfer learning. Many studies utilize 

domain-specific adaptations of BERT, applying these models to 

standard sentence-pair classification benchmarks (e.g., natural 

language inference). Beyond classification, text generation models 

such as T5 hold promise for auto-summarization at varying scales. 

Knowledge graphs implemented in the biomedical domain foster 

supervised learning against labeled entities and relations, leading to 

improved performance on related tasks. Tuning and evaluating sets of 

existing resources addresses two common challenges in knowledge 

graph construction: data density and sensitivity to bias or noise. In a 

complementary vein, multiple training methods have been proposed in 

sequences or multi-view settings, allowing for exploitation of potential 

label sources. Natural language processing enables mining of diverse 

biological hypotheses. Discovery pipelines include the extraction of 

associations between stimuli and responses, candidate interactive 

agents, and genes with redundant downstream pathways. [76, 77, 78, 79] 

AI-driven hypothesis generation 

The AI model enables generation of multiple, highly diverse 

biological hypotheses, followed by high-throughput testing in the 

laboratory within a rapid cycle of hypothesis testing. Initially, the AI 

thoroughly mines the existing literature to identify a specific biological 

question and potential causative factors. Data streams generated from 

high-throughput functional testing specifically test elements identified 
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by the AI model in a manner analogous to the operation of the fastest, 

high-throughput synthesis and screening platforms coupled to robotics 

and AI currently available. The AI uses consensus pathway data to 

establish a causal relationship from high-throughput biological 

correlations. 

This strategy enables exploration of some of the less well-studied 

areas of biology where knowledge is limited; in these areas, carefully 

designed AI- and machine learning-driven experiments will likely 

yield novel findings and lead to the generation of novel findings that 

may subsequently be explored in future AI and machine learning-

driven experimental analyses. The results obtained from these AI-

guided studies can then be mined in the same manner as literature-

derived data, and subsequently used to drive the generation of novel 

biological hypotheses that can be tested via synthetic biology and 

microbiome-directed therapeutic exploration that can then also be 

rapidly implemented. The AI framework allows the combining of key 

causal checkpoints to help further accelerate the rate of progress within 

each area. [80, 81, 82, 83, 84] 

Limitations and biases in AI models 

AI offers powerful tools for biomedical discovery, but successful 

application is contingent on the representativeness and quality of the 

used data. Performance relies on the training data rather than the model 

architecture. Imbalanced data can lead to bias toward predicting the 

common class, while the interpretability of black-box models remains 

a challenge. Further, small datasets might yield unreliable models with 

little predictive power, and successive testing against a few biological 

examples can produce misleadingly high predictive accuracy. 

Nevertheless, the limited availability of high-quality data might not 

only hinder model validation but ultimately impact the whole field of 

research. Therefore, assuring data quality remains a pressing concern. 

Problems can arise at all stages of data generation and processing 

from raw sequencing data to cleaned and normalized feature tables. 

Variances due to different platforms and laboratory protocols require 

dedicated attention, for instance, by involving the actual laboratories 

when compiling a meta-dataset or aligning data captured with other 
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experimental settings. Adverse effects posed by batch configurations 

can be detected during preliminary analyses and corrected through 

multiple-method approaches or source-effect removal sessions. 

Moreover, sequencing depth is a crucial factor influencing outcome 

reproducibility, and input data should be extensive enough in this 

regard. Consequently, data distributions facing high frequency shifts 

should be resampled, preventing predictive models from relying on 

rare features. [85, 86, 87, 88] 
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Chapter - 5 

Microbiome Data Generation and Integration 

 

 

Metagenomics and metatranscriptomics-widely used for characterizing 

microbial communities at composition and functional levels-sample 

the collective DNA and RNA of the community, indicating the 

organisms present and their potential metabolic activities. Shotgun 

metagenomic sequencing, which randomizes DNA fragments so that 

both low- and high-abundance organisms can be sequenced without 

relying on marker regions such as 16S rRNA genes, is increasingly 

used. Metagenomics performs the sequencing in bulk, capturing all 

reads and providing maximum data for community analysis, whereas 

metatranscriptomics focuses on the RNA expressed at a specific niche. 

Additional metagenomic and metatranscriptomic strategies, such as 

16S rRNA gene amplicon sequencing. 

Microbial products are also characterized thanks to the growing 

adoption of LC-MS, GC-MS, NMR, and matrix-assisted laser 

desorption/ionization mass spectrometry imaging technologies. Such 

systematic interrogations produce metabolome and proteome profiles 

of the samples, evaluating differences in metabolite types and 

abundances across conditions. These datasets allow elaboration of 

metabolite-function correlations. The microbiome interacts with 

multiple host organs via several metabolites that can serve as disease 

signatures. Proteome profiling identifies differences in protein 

expression, linking specific proteins with relevant functions, pathogen 

infections, or dysbiosis of the gut-skin or gut-brain axis. Integration of 

metabolomic and antimicrobial peptide concentration data into 

microbiome-associated signatures holds significant potential [89, 90, 91, 

92]. 
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Metagenomics and metatranscriptomics 

Metagenomics provides insight into the taxonomic composition of 

microbial communities and contributes to understanding the associated 

functional repertoires. It involves sequencing the total microbial DNA 

(or employing shotgun metagenomics) from environmental samples, 

typically using shotgun sequencing (SBS) or targeted sub-fragment 

amplicon sequencing (such as 16S rRNA genes for bacteria and 

archaea or fungal ITS regions). Metagenomics is not only suitable for 

sequencing specific domains or kingdoms of life but can also be 

applied to organisms with unknown reference genomes; in that case, it 

permits metagenome assembly, followed by annotation of the 

assembled genomes. Depending on prospective research topics, the 

target composition and identity, and the bioinformatic capabilities and 

libraries available, researchers can choose between taxonomic 

classification using reference databases, where sequence identity is 

sought in previously sequenced organisms, and more complex 

functional prediction of putative uncharacterized proteins. 

Metatranscriptomics extends metagenomic analysis onto the 

mRNA transcriptome level. Characterizing the metatranscriptome in 

combination with the metagenome and the other "omics" produces 

credible evidence about active functions in specific environments. 

Metatranscriptomic approaches enable detection of genes related to the 

current environmental conditions, including response processes such 

as low oxygen concentration [93, 94, 95, 96].  

Metabolomics and proteomics profiling 

With their immense growth in recent years, metabolomics and 

proteomics analysis technologies are actively expanding their 

application to the microbiome field. Metabolomics aims to provide a 

comprehensive profiling of circulation metabolites. Proteomics 

profiling offers a detailed quantification of microbial community 

composition and functional capacity through protein-level operational 

taxonomic unit (OTU) sequencing. 

The major technical platforms for metabolomics include nuclear 

magnetic resonance (NMR) spectroscopy, gas chromatography-mass 
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spectrometry (GC-MS), liquid chromatography-mass spectrometry 

(LC-MS), and their combinations. Cumulatively, these technologies 

cover a wide spectrum of metabolites from different classes such as 

amino acids, fatty acids, carbohydrates, organic acids, lipid molecules, 

and many others that can play a crucial role in host-microbiota 

interactions. The formation and functions of these metabolites correlate 

with various host disorders such as cardiovascular disease, obesity, 

diabetes, and inflammatory bowel disease (IBD); even within the gut, 

the microbiota produce several metabolites with far-reaching 

regulatory effects. They regulate the gut integrity and gut-blood barrier, 

serve as energy sources for colonic mucosa, and maintain the balance 

of gut microbiota composition. 

The major technical platform for proteomics includes 

metaproteomics, which is based on deep sequencing of short peptide 

fragment libraries and further mapping these fragments back to 

metagenomic-assembled gene datasets. Compared with metagenomic 

approaches, the proteomics are closer to what the microbiome actually 

performs in the human body. Very recent progress has demonstrated 

its ability to capture the fine-scaled protein membership in the 

microbiome. [97, 98, 99, 100] 

Single-cell and spatial microbiome technologies 

New sequencing technologies can provide a single-cell resolution 

of the living microbiome or its components and relate them, for 

example, to immune cells at single-cell resolution in the mucosa. 

ScRNA-seq, for example, has allowed the transcriptome of prokaryotic 

and archaeal organisms to be obtained through Catalyzed Reporter 

Deposition in situ-based scRNA-seq, generating the Carrera of small 

prokaryotic cells in the FIB-SEM. Techniques of the former type can 

also probe the presence of entire microbial communities in 

combinations with other opportune analyses. Microbial organisms can 

also be characterized through their placement within tissue via spatial 

transcriptomics, and the conditions surrounding them can be measured 

as well. The ongoing expression of the transcriptomes at single-cell 

resolution of eukaryotic, bacterial, and acheral organisms with their 

position within tissues can be obtained through spatial transcriptomics 
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techniques, which can relate these single-cell expression data to the 

presence of specific immune cells, for example, or the 

microenvironment of specific bacterial communities. Some techniques 

allow for the definition of microbiome-related chemical signals at the 

level of entire organs, while others provide integrated microbiome-

organelle resolution. A broader description of the microbiome will also 

start being offered by the integration of transcriptomes and proteomes 

through new combined experimental and analysis strategies. 

The great diversity of sequencing techniques is accompanied by 

the increasing richness of reconstruction or detection methods that 

allow mapping the associations and interactions of multiple species 

over time and space. Various methods allow associations and 

interactions between fungal, archeal, and bacterial microbiomes to be 

inferred as well the resolution of these associations and interactions at 

the level of metagenomes, gene-content profiles, or co-abundance. 

Nevertheless, the analysis that remains largely understood and mainly 

unknown concerns the environmental novel (meta) transcripts derived 

from the microbiome. Resolution at the host-microbiome interaction 

level is also starting to be addressed through predictive metagenomics-

coupled modeling approaches. With the great sensitivity and resolution 

offered by scRNA-seq and by transcriptomics methods, these 

techniques are progressively entering into the realm of analysis and 

reconstruction of host-microbiome interactions using transcriptomes, 

permitting the resolution of metagenome-based associations, as well as 

the detection or prediction of novel associations, together with the 

description of interactions (bi)findings) between different host and 

microbiome members. [101, 102, 103, 94] 

Multi-omics data integration strategies 

Successful prediction of disease-associated microbial signatures 

and preparation of microbiome-based clinical predictive models are 

based on a combination of metagenome, metabolome, and other multi-

omics data layers such as transcriptomics and proteomics. The utility 

of metabolomic, transcriptomic, and proteomic data has been 

demonstrated in microbiome-based disease models. Different analysis 

strategies can be used to enable the integration of heterogeneous 
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microbiome data layers collected in different studies. The integration 

of metagenomics with multilayer concentration profiles is an effective 

approach for improving the accuracy of predictive models and 

understanding disease mechanisms. 

The recent development of transfer learning methods enables the 

acquisition of model knowledge from a source population where a large 

amount of labeled data is available for public disease-related topics and 

adapts it to the target population for a new or emerging disease with 

extremely limited and scarce labeled samples. This strategy leads to 

improved prediction performance with “less” by leveraging knowledge 

learned from “more.” Large amounts of literature-based knowledge 

extraction and validation pipelines are powerful instruments for 

consolidating, confirming, and expanding predictive models. [104, 105, 106, 

107] 

Data standardization and quality control 

The use of microbiome data in artificial intelligence models can be 

constrained by heterogeneous data generation methods across studies 

and the absence of analytical best-practice standards. Despite extensive 

advances in data generation, the establishment of technical processing 

pipelines, and the development of meta-analysis algorithms, other 

biological fields still lack agreed-upon standards for microbiome data 

generation and analysis. Conversely, rapidly evolving automated 

pipelines and comparative frameworks, which are specific to particular 

types of biological data, have allowed other research fields to 

synthesize massive quantities of quality-controlled data. The extension 

of existing sample and data processing standards and the development 

of AI-mining frameworks for microbiome data could aid in 

overcoming these problems. 

Data quality assurance is critical for both the data used in AI 

analyses and the generation of data- and learning-model-specific 

mining frameworks. Microbial community databases facilitate the 

mining of reference sequences for diverse microbial substrates, serving 

as essential resources for training and validating AI models. AI- and 

machine-learning-based data assimilation frameworks that provide 

tools for coarse-scale molecular-level explorations are also essential 
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for interpreting spatial and temporal microbiome differences. 

Integration tools that utilize advanced machine-learning-based 

molecular-difference prediction can rapidly interrogate metagenomic 

sequence data from hundreds of samples [108, 109, 110, 111].  
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Chapter - 6 

AI-Based Microbiome Profiling and Pattern 

Recognition 

 

 

Artificial Intelligence (AI) tools enable taxonomic classification, 

functional annotation, and feature selection from microbiome profiles. 

High-dimensional data representation threatens generalizability, 

interpretable biological priority of selected features depends on 

designated criteria, and list- or signature-based methods for deriving 

disease-specific patterns must ensure sufficient transferability. 

Prediction of immune and chronic disease threats involves pattern-

recognition models trained on microbiome profiles and associated 

health outcomes. Population-level models identify microbiome 

signatures for characteristic signatures for these conditions, while 

cohort-wide longitudinal prediction differentiates population-level 

correlations from potential causal relationships. Cross-validation of 

population-level signatures across multiple cohorts tests 

reproducibility. Population- versus individual-level predictions 

represent converse facets of model accuracy; generalizability-based 

models inform microbiome-shifting strategies, whereas non-

transferable models facilitate personalization. [112, 113, 114, 115] 

Taxonomic and functional classification using AI 

Artificial intelligence is increasingly used for taxonomic and 

functional classifications of microbiome data based on amplicon 

sequencing data (16-19) and metagenomic assemblies (20,21) at both 

marker-gene and whole-genome levels, including species-level 

classifiers for complex datasets. Performance evaluations are necessary 

to validate neural network meta-classifiers on sequences from diverse 

environments. Such models have proven successful for taxonomic 

annotations, yet many rely on deep learning approaches trained on 
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sequences from specific habitats-often Earth surface samples with high 

abundance and diversity. Machine learning classifiers have also been 

trained specifically for metagenomic data. Niche adaptation and 

taxonomic feature abundance appear key in species identification. 

Meta-classifiers for 16S rRNA gene sequences have been trained for 

microbially diverse environments but can be used only to classify 

among genus-level groups. 

Functional predictions can also be conducted with neural networks. 

Microbial multi-omics datasets can be fed to AutoEncoder models to 

exploit clustering and disentangled-bottleneck properties and allow 

dimensionality reduction in high-dimensional settings. A general 

strategy to support taxonomic imputation consists of training a deep 

neural network by combining label embedding representation and 

transition probability. These meta-learning adaptations cover new label 

distributions with minimal training effort. Moreover, recurrent neural 

networks have been used to directly infer pathways and genes from 

full-length 16S rRNA sequences, and pathway coverage can be learned 

from gene co-abundance patterns in an unsupervised manner. [116, 117, 

118, 119] 

Feature selection and dimensionality reduction 

Feature selection reduces the number of variables by selecting the 

most informative and relevant features. The final feature set should 

maximize the model’s prediction performance while providing a better 

understanding of the underlying biological processes. Dimensionality 

reduction transforms the feature space into a space with fewer 

dimensions that captures most of the variance. This technique is 

commonly used with image data but can also be valuable for omics 

data analysis, where the number of features is usually very large. 

Feature selection is critical for any classification task because even 

a small number of redundant or irrelevant features can adversely affect 

model generalization performance. Feature selection methods can be 

grouped into three categories: filter methods, wrapper methods, and 

embedded methods. Filter methods, such as ANOVA F-value 

statistical tests, correlation, or mutual information criterion, measure 

the relevance of each feature in isolation and rank them according to 
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their scores in connection to the outcome variable. Selection is not 

biased by the downstream model. Wrapper methods evaluate model 

performance with different feature subsets, whereas embedded 

methods perform selection during the model-training process. The 

trade-off is that these methods are generally more computationally 

intensive and prone to overfitting, especially when the number of 

features is large. 

After raw features are parsed, most machine-learning 

methodologies benefit from using latent representations instead of the 

original feature space. This allows a model to generalize better when 

dealing with multiple datasets and population settings. Dimensionality-

reduction methods can be grouped into supervised or unsupervised 

categories. Supervised dimensionality-reduction approaches, such as 

supervised principal component analysis (PCA), remain close to 

supervised feature selection methods in that they aim to achieve better 

prediction performance in the decision stage. Unlike supervised 

dimensionality-reduction methods, unsupervised approaches do not 

use the label information of the training data. [120, 121, 122, 123] 

Disease-specific microbial signatures 

Defining disease-specific signatures is a critical step for accurate 

prediction and identification of disorders based upon microbiome data, 

enabling the development of better diagnostic methods and the 

elucidation of biosignatures related to underlying pathophysiological 

pathways. Consequently, this section presents a detailed discovery 

workflow for microbiome-disease signatures encompassing several 

distinct cohorts belonging to a wide range of clinical conditions. 

Potential disease-specific signatures can be identified in an 

unsupervised manner or pre-defined for specific disorders on the basis 

of known associations, or dysbiosis patterns. While microbiome 

signatures may take the form of taxonomic or functional features, it is 

necessary to cross-validate commonly identified signatures across 

different cohorts to ensure robustness and accuracy. Specific signatures 

are, therefore, subjected to stringent testing in different cohorts to 

confirm their predictive power and biological relevance. [124, 125, 126, 127] 



 

Page | 31 

Predictive modeling of disease risk 

Microbiome-based predictive models were constructed to estimate 

the risk of multiple immune and chronic diseases. Meta-analyses 

identified microbial features associated with disease, and external 

independent cohorts were leveraged for model development. For 

several diseases, models predicted risk years in advance of the clinical 

diagnosis and classified individuals into risk strata. These concepts can 

be further developed to assess the risk of additional diseases and might 

ultimately assist clinicians in making proactive preventive decisions. 

The microbiome participates in various biological functions that 

have been imputed as putative mediators of the development of both 

immune disorders and several chronic diseases influenced by the 

microbiota. Therefore, the cumulative evidence suggests that the 

microbiome could serve as a biomarker for risk prediction, early 

disease detection, disease stratification, and personalized medicine. 

Several studies have shown that microbiome-based models can 

efficiently predict the risk of complex diseases. These models leverage 

multi-cohort approaches that combine information from multiple 

independent cohorts to better extract relevant signals from the 

microbiome data. A meta-analysis assessed the association of the gut 

microbiome with twenty-four diseases, identified microbial features 

consistently associated with disease across cohorts, and subsequently 

constructed predictive models for nine diseases using metagenomic 

data from three independent cohorts. Overall, the models predicted risk 

years before clinical diagnosis and stratified patients into risk groups. 

Such approaches could be useful for other immune disorders and 

chronic diseases influenced by the microbiome. [128, 129, 115, 130] 

Validation and reproducibility of AI models 

An essential aspect of applying AI models to predict human 

conditions is their validation and reproducibility. AI-derived models 

should ideally be trained and tested on independent cohorts not 

included in the discovery phase. Internal validation is emphasized 

when external data sets are unavailable and it is often used as a 

preliminary step before submitting a model for external testing. 
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Validated models must be open and clearly reported, along with 

detailed descriptions of the biological rationale behind feature 

selection. The complete procedure should be shared in an accessible 

and reproducible format to facilitate broad utilization and testing. 

For microbiome-based models, external testing of disease-

associated signatures is a priority. Discrepancies may indicate 

sampling or methodological differences, population-specific signals, or 

the effect of confounders not considered in the discovery cohort. Well-

defined stratification approaches, including sensitivity analyses, are 

essential to circumscribe model applicability. [131, 130, 132, 133] 
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Chapter - 7 

Predictive Modeling of Immune and Chronic Diseases 

 

 

Microbiome data-based models enable the prediction of immune and 

chronic disease risks and timeline of onset. Candidate cohorts are 

scanned for associations between gut microbiome composition/ 

function and disease occurrence within an arbitration period. Disease 

risks are then predicted by supervised machine learning models using 

microbiome composition/function and non-microbiome risk factors as 

input features. Meta-analyses have been conducted by combining 

findings from hundreds of studies, such as colitis in mice, several 

immune disorders, and metabolic syndrome in humans. AI algorithms 

not only facilitate prediction but also guide the timing of sample 

collection for early detection and stratification of disease risk groups. 

Microbiome data collected over time allow an association analysis 

between microbial shifts and immune or chronic disease trends. State-

of-the-art methods are applied to identify the influence of taxa variation 

in one time frame on the incidence of disease in a later stage, thus 

revealing potential causal directionality. Such longitudinal models 

refine population-level prediction towards individual-level estimation, 

while the former generalize well across cohorts, the latter provide 

tailored strategies for disease prevention or amelioration. AI-based 

models can pinpoint specific pathways targeted by different 

populations or cohorts, hence offering translational clinical 

implications. 

The loss of microbiome diversity in life is generally recognized as 

an indicator of disease; however, the preceding interval of diversity 

loss prior to the occurrence also holds great implications for the same 

disease. The shorter the duration before the manifestation of immune-

mediated disease, the stricter the time points of detection. Hence, 

integrating such empirical support into prediction models will facilitate 
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the closing of prediction gaps based on estimations derived from 

standalone source species or groups. It has also been shown that 

immune disorders can serve as a modulatory variable for dysbiotic 

manifestations. [134, 10, 135, 136] 

Risk prediction using microbiome-based models 

Artificial-intelligence models established a link between 

microbiome features and multiple immune disorders/early-life 

conditions, enabling prediction of risk in different growth cohorts. 

Such predictions support focused disease-preventive actions, 

particularly when made early and at population scale. Microbiome 

patterns also enabled analysis of time-series data from different cohorts 

to detect probable disease precursors at an individual level. 

The human microbiome has been implicated in the development of 

various immune and allergic disorders, such as allergic rhinitis, asthma, 

and food allergies, as well as other immune conditions originating in 

early life. A visualized representation of the connections among 

microbiome changes, dysbiosis, and immune diseases provides a 

reference for disease prevention strategies. A microbiome-immune 

axis approach opens new possibilities for preventive medicine by 

elucidating the underlying mechanisms and identifying operational 

signatures. AI models trained on these signatures are valuable for risk 

prediction in healthy populations-especially during critical early 

periods such as infancy and early childhood, when preventive measures 

can be quickly applied. [137, 138, 139, 140] 

Early disease detection and stratification 

Microbiome-based predictive models hold promise for early 

detection of immune and chronic diseases, facilitating the identification 

of individuals at elevated risk prior to clinical manifestations. Recent 

studies reveal associations between baseline stool microbiomes and 

subsequent development of several diseases, including specific types 

of cancer, Crohn's disease, and ulcerative colitis. Such findings raise 

the question of whether these correlations merely reflect susceptibility 

to disease or instead represent a precursory alteration in microbiome 

composition that may precede clinical onset for extended periods and 

drive disease evolution. 
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To assess this possibility, a time-series cohort of fecal samples is 

examined, with microbiomes reconstructed at multiple pivotal points 

preceding disease onset. Additionally, clinical annotation of these 

samples and associated patient metadata facilitates analysis with 

respect to diverse diseases and conditions. Through careful 

investigation of the resulting longitudinal data, clear timelines for 

microbiome-associated disease onset and progression are established, 

and conditions for subclinical stratification are identified. These 

insights hold great potential for the early detection of immune and 

chronic diseases and provide a foundation for longitudinal modeling of 

microbiome-disease relationships and underlying mechanisms [141, 142, 

143, 144].  

Longitudinal microbiome-disease modeling 

Step-wise analysis of sequentially sampled microbiome data can 

achieve causal updates on disease development trajectory and their 

predictive pattern. Time-series microbiome structures can be combined 

with potential data-related disease onset information to perform 

supervised machine learning that differs from conventional predictive 

modeling. The method is complementary to conventional predictive 

modeling, interpretable by providing augmenting combined disease 

association rules, and able to incorporate microbiome-related yet 

temporally distant disease onset data to identify risk factors. 

Well-calibrated prediction models provide more than just 

association with the predicted class. These models are also capable of 

estimating disease risk for each sample. For example, prediction 

models for allergic diseases have high specificity, and their threshold 

can be adjusted according to clinical demand. A pilot study on 

prediction of Crohn’s disease-associated proteinuria onset at a 10-year 

horizon has demonstrated a potential to provide patients with warnings 

of disease risks more than 5 years prior to onset. Such prediction 

modelling capabilities also suggest that prediction models are 

potentially able to identify microbial features-like dosage forms 

involved in the disease progression that have predictive power. Applied 

on the original longitudinal dataset, population-level risk predictions 

can be complemented with individual-level sampling dubbed “when 
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will I get sick” questions that are increasingly popular with the public. 
[145, 146, 147, 148] 

Population-level vs. individual-level predictions 

AI-driven microbiome-based predictive models enable forecasting 

of disease risk at different levels- population and individual. 

Population-level predictions identify general trends across large 

cohorts; they can reveal the presence of clear shifts in the microbiome 

composition during the onset of specific diseases, thus allowing for 

early disease detection. Individual-level predictions, on the other hand, 

address personalized medicine, enabling predictions of disease 

susceptibility and prognosis for each patient or even allowing for the 

stratification of individuals into specific risk subgroups. However, 

while microbiome-driven models may be highly predictive for a 

defined group of patients, they may not perform well when applied to 

individuals from other groups with different characteristics at the time 

of prediction. 

Finding a balance between population-level predictive power and 

model generalization performance remains a challenge, especially 

when working with smaller, more specific cohorts used to train the 

algorithms. In this case, strict external validation and multiple testing 

procedures are essential to achieve reproducibility and general 

applicability. Predictive models have the potential to deliver preventive 

strategies that would monitor a patient’s microbiome trajectory over 

time in order to generate specific intervention plans that can reduce the 

risk of inflammatory bowel diseases, diabetes, and other disorders, or 

signal a high probability for a brain disorder 5 years prior to clinical 

diagnosis. [149, 150, 151, 152] 

Clinical interpretation of AI outputs 

Machine learning models successfully trained to predict the risk of 

immune and chronic diseases based on changes in the gut microbiome 

undergo a final transformation phase. Their outputs are converted into 

interpretable descriptions, enabling timely clinical action for patients. 

Microbiome alterations affecting underlying mechanisms are 

highlighted together with corresponding targetable microbial taxa or 
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metabolites. The specialist can then assess whether the manipulation of 

these microbiome components is feasible for the specific patient at risk 

and whether the active modulation can be coupled with primary 

prevention strategies. 

Output interpretation offers several decision-support options. For 

instance, it may help determine whether reconstituting a specific group 

of beneficial microbes is plausible by assessing their enterotype. It may 

highlight cross-kingdom driver-passenger relationships that can be 

exploited for co-administration of interacting species, such as specific 

fungi and bacteria. Additionally, it may reveal loss of populations 

involved in protective mechanisms, indicating that restoration of 

associated functions through microbial administration is feasible. 

Importantly, the outputs could facilitate patient stratification for 

upcoming clinical studies. [153, 154, 155, 156] 
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Chapter - 8 

Engineering the Microbiome: Concepts and Strategies 

 

 

Engineering the microbiome involves intentional perturbation of a 

microbial ecosystem for a desired function. Desired functions vary 

with application but may include dysbiosis reversal, disease risk 

mitigation, or restoration of lost functions. Important considerations in 

microbiome engineering include maintaining biosafety in the 

engineered microbial ecosystem and achieving any functional 

alteration with the minimal possible perturbation to the original 

ecosystem structure; however, these principles are not universally 

applicable. Probiotics, prebiotics, synbiotics, and microbiota 

transplantation are considered established methods of dysbiosis 

modulation. Engineered microbes, synthetic microbial consortia, and 

second-generation probiotics consist of genetically modified strains 

that can be safely reintroduced into the environment; these approaches 

still face hurdles, including regulatory challenges and ethical scrutiny. 

Precise modulation of defined microbial ecosystems, such as human 

gut, skin, or vaginal consortia, aligns new data and understandings with 

traditional microbiome transplantation methods. Precise resilience or 

stability recovery in defined microbial nursery communities has also 

been explored. 

Specific modulation of dysbiotic ecosystems by community 

replacement, species addition, and selective membership regulation 

represents a rapidly evolving strategy in the field of microbiome 

engineering. Controlled addition of external species, especially 

keystone species, could facilitate natural recovery processes, whereas 

restraint traits gene systems can be developed and implemented to 

facilitate natural addition of desired, imported, and alien microbial 

species for long-term maintenance. Proposed monitoring strategies can 

evaluate stability, resilience, and healthiness of engineered microbial 

ecosystems. [157, 158, 46, 159] 
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Principles of microbiome engineering 

Microbiome engineering aims to create favorable shifts in 

composition or function, thereby enhancing health or reducing disease 

risk. Successful strategies should be based on a mechanistic 

understanding of host-microbiome interactions and the functions and 

principles governing microbial community dynamics. Specific goals 

include restoring lost ecological functions after extinction (e.g., 

through transplantation) and prevention of leukocyte-driven, 

dysbiosis-mediated inflammatory pathologies by re-establishing 

immune-inducing microbial aldehyde biosynthesis. Safety remains the 

highest priority, encompassing engineering-induced unintended 

consequences or unforeseen determinants of host-microbiome 

interactions. 

Preventive measures include the use of probiotics, prebiotics, and 

synbiotics to increase microbial functions associated with lower 

disease risk; the design of microbial strains or defined communities to 

modulate the microbiota without transmissibility risks; and the 

identification of targeted, controlled, and monitored keys to precise 

ecosystem modulation. Three critical components are needed for 

successful microbiome engineering: deep communication and mutual 

learning between microbiome researchers and engineers; analysis of 

host-microbiome interactions at all levels; and functional snapshots of 

microbiome community stability. [157, 160, 161, 162] 

Probiotics, prebiotics, and synbiotics 

Constitute the most comprehensively defined categories of 

approaches targeting the microbiome. Probiotics are live 

microorganisms that, when administered in appropriate amounts, 

confer health benefits on the host. This definition does not specify 

genera, species, or strains, avoided in clinical trials whenever possible. 

Prebiotics are substrates that are selectively utilized by host 

microorganisms, providing health benefits. Synbiotics consist of a 

combination of probiotics and prebiotics that beneficially affect the 

host by improving the survival and activity of probiotics in the 

gastrointestinal tract. Probiotics and prebiotics are readily available in 

fermented foods, dietary supplements, and functional foods. Synbiotics 

are available in fewer products, mostly as dietary supplements. 
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Several candidate probiotics have been suggested for preventing 

allergy and asthma. Enterococcus, Lactobacillus, and Bifidobacterium 

species of genera have been investigated the most in interventions 

targeting allergy and asthma prevention and often incorporated in 

synbiotic formulations, sometimes with Inulin, oligofructose, or other 

prebiotics. Few probiotics have been shown to ameliorate allergy and 

asthma in humans; some of their effects may result from the combined 

action of multiple strains-especially when tested at the population 

level. Directed probiotics may support child growth and development 

in subsets of children under environmental stress but do not replicate 

human breast milk, and effects on specific immunoglobulin E levels or 

allergy incidence after the first two years of life remain inconsistent. 

For all categories of microbiome-modulating interventions, 

evidence from recent clinical trials should continue to be examined and 

synthesized in order to reveal reliable patterns and support causal 

inferences. The balance of available evidence can thus inform AI-

driven design of hypotheses and recommendations for subsequent 

intervention trials. [163, 164, 165, 166] 

Engineered microbes and synthetic consortia 

Comprise groups of distinct strains designed to achieve specific 

functions through common biosynthetic pathways. Furthermore, 

specific strains can assist in delivering auxiliary functions, thus making 

the design of synthetic consortia a practical option for achieving 

complex aims. During the engineering process, available metagenome-

assembled genomes (MAGs) from disease-associated microbiota can 

be utilized as a basis. When the potential of a strain to engender a 

particular metabolite is documented, these strains can be established 

and their effects evaluated at different dendrogram branches. 

Consequently, the candidate-modulating strains can be assimilated into 

distinct microbial consortia. However, natural ecosystems are 

inherently stable and capable of residing and thriving in specific 

environments. Consequently, a major safety concern related to 

administration using engineered microbes and synthetic microbial 

consortia is avoidability, or the possibility of surviving in a foreign 

environment different from their natural habitats. The long-term effects 
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of artificial synthetic microbial consortia on the human body remain 

unexamined; these concerns must be discussed and thoroughly 

evaluated before moving on. 

Artificial-intelligence approaches can provide real-time decision 

support for patients by carefully monitoring their fecal conditions 

through established smart healthcare systems either in their homes or 

on the move. Such automated personalization could further stimulate 

patient interest, enhancing the effect of such a personalized-modulating 

method. Furthermore, with the rapid advancement of biotechnological 

support, an even broader range of genes could be targeted for 

biosynthesis; thus personalized design aiming for more complex 

modulation might eventually be realized. To mitigate various diseases 

related to alterations of the gut microbiome, precision modulation 

should be conducted cautiously, aiming for balanced changes to restore 

the robustness of the microbiome ecosystem, with the goal of returning 

patients to a healthy state. [167, 168, 169, 170] 

Microbiota transplantation approaches 

Fecal microbiota transplantation (FMT) is established as a 

powerful therapeutic modality for C. difficile infection, but 

applications for other diseases remain limited. Vaginal microbiota 

transplantation is an emerging intervention for recurrent urogenital 

infection, although supporting clinical evidence is still lacking. 

Defined-microbiome transplantation delivers a well-characterized 

microbial community for which efficacy can be targeted to specific 

indications. Infection risk is a major consideration in all microbiota-

transplantation strategies, and appropriate monitoring protocols should 

be established. 

Fecal microbiota transplantation (FMT) has been successfully 

employed in the treatment of patients with recurrent Clostridium 

difficile infection and is undergoing clinical testing in a variety of other 

conditions. Despite potential benefits, the implementation of FMT for 

disorders beyond C. difficile infection remains hampered by concerns 

regarding safety and efficacy. Vaginal microbiota transplantation is an 

approach to address recurrent bacterial vaginosis and urinary tract 

infection, but supporting clinical data are scarce and preclinical reports 
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have yielded mixed results. The application of defined-microbiome 

transplantation enables the transfer of a known microbial consortium 

with a specific therapeutic target, yet this method faces its own 

challenges, including the risk of pathogen transmission and community 

instability. To minimize the risk of transmission, all transplantation 

strategies should be guided by evidence-based monitoring approaches 

to assess infection risk. [53, 56, 54, 171] 

Precision modulation of microbial ecosystems 

Maintaining a healthy balance among microbial communities is 

crucial to the well-being of the host. Disturbances in the community 

composition can promote dysbiosis, which is defined as the loss or 

overgrowth of certain members of the microbiota and concomitant loss 

of biodiversity and community resilience, and a decreased ability of the 

microbiota to respond to external stressors. Under the influence of the 

host environment, diseases are associated with changes in microbial 

composition and function, and are characterized by a specific loss of a 

subset of taxa. It is thus possible to attain preventive or therapeutic 

outcomes by precisely restoring the absence of members, or 

modulating an overgrown population. However, such corrective 

measures are not always successful, mainly because (i) the restoring 

approaches do not consider the complete ecosystem, and only replace 

the absent microbe, (ii) a defined-self microbiota transplant approach 

is not supported by sufficient evidence or resources; and (iii) the 

monitoring of the population response and of individual health 

conditions remains a blind process, without feedback control. 

To increase the chances of success, the transforming interventions 

should first be predicted and designed based on a deep understanding 

of the microbial ecosystem and of the patients’ characteristics, or 

directly controlled by monitoring desirable patterns. Protocols can be 

developed with such features for three sets of interventions. Firstly, the 

introduction of abundant, under-consumed species should be based on 

their associations with health-promoting functions (detoxification, 

antiaging, etc.), and complemented by recipes for the required 

substrates. Secondly, population intensities that have a deleterious 

effect on the host should be identified, and interventions to reverse 
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them designed. Finally, the trends of important microbial ecological 

parameters (e.g. diversity, rarefaction of keystone taxa, redundancy of 

interaction patterns or ecological network) can be exploited to assess 

whether the microbiota is moving away from illness, and feedback 

signals help to intentionally maintain a balanced course of progression. 

Such monitoring patterns can also trigger and supervise microbiota 

interventions in closed loops. [48, 172, 173, 174] 
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Chapter - 9 

AI-Guided Design of Therapeutic Microbial Consortia 

 

 

AI-driven optimization methods facilitate the design of therapeutic 

microbial consortia that target specific health conditions. User-defined 

goals determine the microbial group structure and functions, 

constraints ensure biosafety and stability, and compatibility screening 

identifies supportive intertaxa interactions at several levels. Pathway 

flux analysis guides metabolic engineering to achieve desired 

functionalities, while simulation of environmental perturbations and 

resilience assessment foster robustness. Finally, customization 

pipelines allow patient-specific tailoring and personalization of the 

therapy. 

Existing therapeutic agents and planned clinical experiments 

provide proof-of-concept for individual modules, while publicly 

available cohort data set building blocks for interventions targeting 

metabolic syndrome. A range of additional health problems is 

amenable to similar AI-driven approaches, including immune diseases, 

cancer, and neurodegenerative disorders. Robust pipelines enable the 

efficient design of microbiome-based therapies targeting a wide array 

of health conditions and key microbial traits [175, 176, 177, 178].  

Optimization of microbial community structure 

Microbial communities play a crucial role in maintaining 

ecosystem stability, function, and resilience. The structure of these 

communities, defined by the composition and relative abundance of 

resident species, is a key determinant of these properties. Previous 

studies have shown that the ability of microbial ecosystems to resist 

perturbations relies on specific patterns of community structure. 

Microbiome engineering efforts should therefore optimize community 

structure. However, the objectives of these engineering efforts-such as 



 

Page | 45 

promoting metabolic pathway expression, enhancing resilience to 

perturbations, or improving strain compatibility-often conflict with one 

another. Strain selection, interaction modeling, and intervention design 

should therefore incorporate multiple objectives to achieve maximal 

efficacy. 

Machine learning optimization algorithms are well suited to these 

multi-objective design challenges, and can also incorporate solutions 

found using conventional approaches. Fitness landscapes of 

community-level properties can be inferred from strain compatibility 

assessments, and utilized to prioritize strain combinations for 

validation in gnotobiotic models. Together, these approaches can 

identify compatible community structures for particular applications, 

guiding the selection of candidate consortia for next-generation testing. 

In addition, perturbation response information can be integrated to 

assess the resilience of candidate configurations, enabling the 

identification of robust modular designs for sustainable microbiome-

mediated effects. [179, 180, 181, 182] 

AI-driven strain selection and compatibility 

Two distinct principles guide the selection of microbial strains for 

therapeutic consortia targeting chronic diseases and immune disorders. 

The first principle emphasizes the identification of a chemically diverse 

collection of microbes capable of producing health-related metabolites 

such as hormones, neurotransmitters, and anti-inflammatory agents (θ-

consortia). The second principle centres on ensuring compatibility 

among the selected strains to maintain community stability throughout 

their active life. The first principle maximizes the possibility of 

detection; the second minimizes the risk of undetected negative 

interactions that could jeopardize efficacy or stability, since resident 

communities are less likely to inhibit strains that are naturally part of 

the system. 

To address the compatibility issue, mathematical models of 

pairwise microbial interactions have proven useful by integrating 

experimental data, co-occurrence patterns at different scales, and 

characteristics of the microbial niche. In a different context, meta-

omics data can guide compatibility predictions, as certain metabolic 
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activities can create barriers to the colonization of specific bacteria. 

The effects of target metabolites on community resilience in the face 

of abiotic perturbations are also relevant for the design of combination 

therapies, as they can determine the best developmental order of 

multiple treatment cycles, potentially allowing for the initial use of 

monospecies microbiotherapy before switching to a cocktail approach. 
[183, 184, 185, 186] 

Functional pathway optimization 

Outlines metabolic engineering goals and pathway flux analysis. 

Engineering microbial strains for specific functions and a carefully 

designed community structure can reconstruct a desired functional 

profile in complex ecosystems, thereby enhancing specific microbial 

metabolic pathways. The design of experiments principle also applies 

here: the contribution of a specific functional pathway can be optimized 

for performance and robustness before being incorporated into a more 

complex community. With proper design, redundant or antagonistic 

interactions can be minimized, allowing the community to achieve a 

particular pathway goal while maintaining the required structure and 

functionality. 

Many metabolic pathways are known to achieve similar outcomes, 

use similar substrates, and interact with common environments, 

making it possible to define a pathway’s contributions and dynamics. 

One well-studied example of the development of a complex 

community that converts into short-chain fatty acids (SCFA) utilizing 

soluble fibre, resistant starch, and non-starch polysaccharide at 

physiological concentrations is the production of biohydrogen. More 

generally, metabolic fluxes, trajectories, and preference relationships 

can be further defined for any key metabolite and its chemical space, 

and pathway influences on health can be described for any other 

metabolite of interest. [187, 188, 189, 190] 

Stability and resilience modeling 

Microbial ecosystems must be capable of withstanding 

environmental perturbations to be effective, and these stability and 

resilience characteristics need to be evaluated during the design phase. 
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Following the framework of ecological stability theory, resilience is 

defined as the area underlying a resilience curve, or the time it takes 

for a community to return to its original state following a disturbance. 

Stability can be examined by determining whether perturbations in 

community structure propagate through the ecosystem, e.g., whether 

abrupt changes in community composition also cause a large change in 

ecosystem functioning. Exactly what measure of recovery time is 

appropriate for a particular human application depends on the 

ecological and clinical context; in the case of dietary changes and 

feedback-controlled probiotics, for example, recovery speed is critical, 

whereas in naturally-occurring microbial populations, full recovery 

within a short timeframe may not be necessary. 

Many machine learning (ML) methods designed to determine 

resilience and stability within microbial communities make predictions 

about community stability or resilience based solely on correlations 

between community members. Due to the relationship between 

community structure and function, these predictions may not be 

misleading and, in fact, are often successful, but correlations must 

always be interpreted cautiously. Other ML approaches use additional 

ecological information, e.g., a metabolic network, to build larger 

models that also predict functionality; this information can improve 

predictions of stability and resilience, but at the cost of requiring more 

detailed empirical data. [191, 192, 193, 194] 

Personalized microbiome interventions 

Microbiome interventions with a well-established clinical effect 

may benefit from personalization, enhancing effectiveness in particular 

patients or subgroups. At a minimum, such strategies can incorporate 

evidence supporting higher treatment efficacy under specific 

conditions. Examples include correction of specific dysbiotic 

signatures; supplementation of a deficient community; or application 

of an adjuvant treatment designed to complement an existing dysbiosis. 

Another layer of customization may involve selection of treatment 

eliciting a desired response within a defined set of options (e.g., choice 

of one among several probiotics). 
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More ambitious interventions consider patient-specific features 

that are essential for treatment success. Fecal microbiota transplants 

(FMTs) are a prime example, due to the necessity of consulting 

treatment compatibility with the recipient's microbiota and the risk of 

transferring an undesirable microbiome signature from donor to 

patient. Finally, full engineering of the recipient's microbiome 

community is theoretically plausible, aiming to establish the healthiest 

community composition possessed by any subject within a healthy 

cohort. Such an approach is entirely independent of clinical features, 

relying exclusively on the microbiome targets identified in the 

development stage and illustrated in the previous section. A practical 

alternative is to maintain indirect control of a personalized FMT 

procedure, in which case the donor’s microbiome offers a shortcut for 

composing a pathogen-free microbiota accurately modeled and 

optimized on a patient-specific basis. [157, 195, 196, 197] 
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Chapter - 10 

Microbiome-Based Prevention of Immune Disorders 

 

 

Specific immune disorders, especially associated with immune 

imbalance, are prevalent in the population and impose a huge burden 

on public health. The identification of microbiome signatures can 

provide insight into the development of preventive strategies. Such 

approaches include modification of the early-life microbiome to reduce 

the risk of allergic asthma, hosting supportive microbial communities 

or transplantation of immune-tolerant microbiotas to ameliorate Th2-

skewed inflammation, delivery of defined bacterial communities with 

adjuvant capacities to enhance vaccination responses, and oral intake 

of products designed based on the microbiota-immune axis. 

Microbiome-based strategies that aim to prevent or reduce the risk 

of developed immune disorders-especially those associated with Th2 

responses in early childhood or Th1-response skewing later in life and 

promote immune tolerance rather than imprinting a Th1/Th3-skewed 

response-have garnered attention. These strategies can be categorized 

into two groups: those targeting the microbiome early during life and 

those targeting the microbiome in adulthood. For the former, 

modulation of the early-life microbiome with probiotics, prebiotics, or 

synbiotics; fecal microbiota transplantation; and feeding with 

microbiota-rich food products have all been proposed, rather targeting 

specific microbial pathways or determinants in a precision-medicine 

manner. In adulthood, immune-tolerant communities can be delivered 

via fecal microbiota transplantation or focused vaginal microbiota 

transplantation to ameliorate Th2-skewed immune disorders [198, 199, 200, 

201]. 

Allergy and asthma prevention strategies 

Allergy and asthma risk reduction strategies based on microbiome 

profiling are diverse and engaging. Different pathways have been 
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linked with elevating the risk of the two conditions. Conclusively, 

probiotics, prebiotics, and synbiotics have shown accumulated but 

mixed evidence for helping prevent asthma and allergy disorders in 

children and adults. More support is desired, especially for the long-

term effects of such intervention, requiring standardized definitions, 

operational means, and study populations. Animal models still serve as 

health-related proof-of-concept studies, and their potential applications 

should be cautiously considered, bearing in mind only a small subset 

of food-associated microbes can act as allergy- or asthma-promoting 

indications, while also maintaining safety during human evaluation and 

future applications. More novel ingredients would be valuable 

complementary material in addition to adequate external trials. 

Allergy and asthma belong to a large family of hypersensitivity 

diseases caused by T helper 2 (Th2) immune response orientation. As 

one of early-life immune traits, the microbiome is recognized for its 

essential role in steering immune equilibrium between effector and 

regulatory phases at different life stages. Risk-stratified mother-infant 

cohorts point to a temporal association between microbiome changes 

and asthma onset during childhood. Maternally modified diets that 

support early-life microbiome maturation, in line with the healthy 

trajectory, associate with lower offspring asthma risk. Significant 

associations have also been observed after early-second-trimester 

dermatological condition and cesarean birth, respectively. However, 

clinical evidence remains unknown on whether targeting other 

microbial-modifying pathways can also mitigate later asthma risk. [202, 

203, 204, 205] 

Autoimmune disease risk reduction 

Recent epidemiological studies suggest that a healthy microbiome 

can reduce the risk of developing autoimmune diseases. However, 

strategies employing microbiome-modulating probiotics have not been 

widely adopted. Importantly, few studies have verified the potential of 

microbial cues for enhancing tolerance towards allergens or other 

environmental immunogenic agents. Such knowledge gaps impede the 

design of biomodulating therapies that can guarantee microbial safety 

and efficacy, delaying their move into clinical and commercial 

applications. 
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Autoimmune disorders result from unbalanced immune responses 

mediating tissue damage. Changes in the composition and/or function 

of the gut microbiota have been associated with various autoimmune 

diseases. Several long-term cohort studies indicate that early-life 

dysbiosis may predispose development of type 1 diabetes and multiple 

sclerosis, while some evidence also links childhood antibiotics 

exposure to juvenile idiopathic arthritis. Analysis of mucosal tissues 

and adjacent healthy and diseased intestinal microbiotas points to a 

significant association of Crohn’s disease and ulcerative colitis with 

local and systemic dysbiosis. These observations suggest that specific 

microbiome signatures could help predict future development of 

particular autoimmune diseases. [206, 44, 207, 208] 

Vaccination response modulation 

Emerging evidence supports a substantial role for the microbiome 

in modulating responses to vaccination. Several recent studies 

observed direct links between vaccine-induced humoral and cellular 

immmunity (measured as immunoglobulin levels, interferon γ 

secretion, etc.) and either the metagenomic profile of the fecal 

microbiota or specific microbiome-derived derived metabolites (e.g. 

butyrate). Microbiome composition also correlated with antibody titers 

induced by COVID-19 mRNA vaccination and the seroconversion 

response to seasonal influenza vaccination. Longitudinal metagenomic 

profiling of SARS-CoV-2 vaccinees detected predictive microbiome 

signatures associated with SARS-CoV-2 anti-spike antibody levels. 

Localization of rituximab-resistant mucosal IgA‐ secreting cells to the 

gingival mucosa-the site of the initial immunization-to provide earlier 

mucosal IgA production is required for increased anti-SARS-CoV-2 

IgG and IgA responses. Metabolomic analysis detected reduced 

production of β-hydroxybutyrate and other microbiome-derived 

metabolites in vaccination non-responders and identified gut short-

chain fatty acids (SCFAs), particularly β-hydroxybutyric acid, as 

potential biomarkers for predicting anti-viral antibody response in 

individuals receiving COVID-19 vaccines. 

To mitigate the possible negative effect of the gut microbiome on 

vaccine efficacy, strategies that modulate microbiota composition and 
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predicted function are under investigation for both inactivated viruses 

and protein-based subunit vaccine candidates. These options include 

supplementation with synbiotics, prebiotics, butyrate, or 

Faecalibacterium prausnitzii; combinations of the probiotic 

Lactobacillus plantarum and tryptophan; Metformin, reported to 

enhance vaccine development and immune response; and specific 

dietary patterns. The combination of fecal microbiota transplantation 

(FMT) and vaccination is anticipated to exert a synergistic effect. [209, 

210, 211, 212] 

Early-life microbiome interventions 

Timely manipulation of the early-life microbiome, the vital period 

for establishing microbiome-immune system interactions, holds great 

promise for preventing immune and chronic diseases. The evidence is 

accumulating for various approaches, but more naturalistic late-life 

interventions to restore early-life signals remain to be explored 

rigorously. A responsible combination of microbiome-based early-life 

intervention and naturalistic late-life restoration may help prevent a 

series of immune-related diseases. 

Allergy and asthma have emerged as major global health burdens 

during recent decades. The connections between the early-life 

microbiome and the risk of subsequent allergy or asthma in human 

cohorts have been cultivated intensively over the past few years. Two 

different operational strategies for allergy/asthma prevention through 

microbiome elicitation have been suggested: the reconstruction of the 

lost vaginal microbiome in mothers, and the provision of probiotics that 

mimic ancestral maternal vaginal microbiota associated with certain 

phylogenetic lineages of Lactobacillus. Both approaches have 

undergone testing in rodents and await prospective validation in 

cohorts of humans. 

A relationship has been postulated between type 1 diabetes and gut 

microbiota; immune-modulatory probiotics are being explored. These 

induce oral tolerance-like pathways that promote the down-regulation 

of islet autoimmunity and the prevention of disease progression in 

high-risk children aged 5 years. Vaccination with islet autoantigens 

combined with early-life probiotic exposure (Lactobacillus plantarum 
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K8) restores islet autoantigen-specific immune tolerance. Such 

findings align with those of T regulatory cell induction studies in the 

NOD model by early-life treatment with Clostridia or a mixed-species 

microbiota. Together, these investigations point to a role for increased 

gut microbiota diversity in diabetes tolerance. [213, 214, 215, 216] 

Immune tolerance engineering 

Several strategies aim to promote immune tolerance through 

microbial cues. Probiotics that exert anti-inflammatory effects, 

especially on the gut-skin axis, may prevent allergic diseases. Other 

interventions either stabilize microbiome composition/transcriptomics/ 

metabolomics during immune tolerance induction, or target nasal, lung, 

and gut microbiota in parallel. Evidence suggests that tolerance can be 

enhanced by oral exposure to innocuous environmental microbes or by 

natural or engineered cohabitation with friendly wild microbes. These 

are more appealing than conventional bacterial/infection-based 

schemes because they avoid biosecurity concerns. 

Based on immune tolerance as the guiding principle, predictive 

modelling and microbiome biosynthesis approaches are used to 

mitigate autoimmune diseases or improve vaccination responses. 

These include a combination of perturbation-transcription based 

synthetic microbiota construction and immunological marker 

prediction. AI-driven techniques can provide new insights into the 

engineering of the gut microbiome to improve vaccine responses for 

infectious diseases. AI systems can also explore the roles of 

microbiota-derived metabolites in modulating immune tolerance 

during a variety of immunological processes. Integrating 

environmental exposures into predictive models may expand the 

toolbox for promoting immune tolerance in other diseases [217, 218, 209, 

219]. 
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Chapter - 11 

AI-Enabled Microbiome Therapies for Chronic 

Diseases 

 

 

Leveraging predictive models trained on large-scale, longitudinal 

microbiome data sets, it is feasible to design microbiome therapies that 

target chronic diseases, such as metabolic syndrome and type 2 

diabetes (T2D). Commonly prescribed drugs for T2D affect the gut 

microbiome, but the specific bacterial pathways and species involved 

remain elusive. Examining the Putative Metagenomic Inconsistency in 

T2D Treatment pathway across T2D, coronary atherosclerosis, and 

Alzheimer disease may clarify the reasons for partial failure and 

identify potential solutions. Similarly, inflammatory bowel disease 

(IBD) and disorders along the gut-brain axis can be treated with AI-

guided pipelines: AI models detect disease-associated microbiome 

alterations, and microbiome engineering techniques target the affected 

pathways. For example, microbiome transplant therapy using various 

types of transplant (fecal, vaginal, or defined) or external additives 

(dietary intervention and prebiotics) can alleviate IBD, and the 

engineering of TMA-producing bacteria can prevent or alleviate the 

consequences of IBD and neurodegenerative diseases. 

With respect to cardiovascular disease, a meta-analysis reveals that 

the relative abundance of two TMA-generating taxa is higher in 

patients, pointing to a potential preventive role for therapies aimed at 

reducing their levels. It is becoming increasingly clear that the gut 

microbiome contributes to multiple diseases via the production of 

distinct metabolites. The next step is to identify metabolites for which 

both supply and consumption pathways can be tailored in order to 

enable a complete therapeutic solution. Looking at aspects of 

cardiology as a whole may accelerate this process, with the associated 

opportunities and challenges offering significant potential. At the same 
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time, the gut-vaginal-oral-breast-fecal microbiome axis provides 

additional considerations for treating complex conditions. 

Metabolic syndrome and diabetes prevention 

Microbiome alterations confer increased susceptibility to 

metabolic syndrome (MetS) and diabetes. Therapeutic strategies 

targeting the microbiota have shown promise for alleviating MetS in 

rodents. Accordingly, AI-assisted pipelines have proposed candidate 

interventions for MetS management. MetS encompasses type 2 

diabetes (T2D) or conditions predisposition characterized by obesity, 

glucose intolerance, insulin resistance, dyslipidemia, and hypertension. 

The alteration of host metabolism propels excess caloric intake and 

stimulates lipogenesis in peripheral tissues. Phylogenetically distinct 

microbiomes enrich in the gut of patients with MetS, and functions 

related to glucose and lipid metabolic disorders tend to differ from 

those of healthy individuals. The microbiome is considered an 

important contributor to the initiation and development of MetS. 

Microbiome-targeted therapies are safe and effective for alleviating 

MetS in mice. Translating these findings into human healthy dysbiosis 

prevention during MetS requires discovery of appropriate candidates 

and optimized therapeutic strategies for clinical practice. 

Engineering the gut microbiome at early life stages to reverse 

imbalances can mitigate the likelihood of developing future chronic 

diseases and ultimately establish the first lines of defense for diabetes. 

Changes in gut microbial composition during early life appear to 

influence glucose homeostasis in adults. Specific alterations leading to 

diabetic complications can also be identified, such that modulation or 

restoration strategies can be proposed. Specificity of modulation 

provides the opportunity to control for collateral, potentially adverse 

consequences beyond the primary treatment purpose. AI-based designs 

contribute to MetS treatment and novel strategies through engendered 

commensal organisms capable of transporting gut microbiome 

metabolites addressing MetS and its components. 

Inflammatory bowel and gut-brain axis disorders 

Aberrant interactions between the immune and digestive systems 

can lead to inflammatory bowel diseases (IBD). An increasing body of 
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evidence implicates dysregulated immune-microbiome interactions 

during disease development, thereby highlighting the microbiome as a 

therapeutic target. Improvement of IBD symptoms has been reported 

after treatment with microbial signatures predictive of positive 

therapeutic response. Similar approaches have been proposed for 

traveler's diarrhea and recurrent Clostridium difficile infection. 

Feeding trials indicate that a diet high in dietary fiber, vegetables, and 

fruits, but low in saturated fats; oral administration of probiotics such 

as Lactobacillus can effectively support gut-down left-enantiomer 

dopamine concentration through the gut-brain axis. Additionally, fecal 

microbiota transplantation reduces pain and Poor Self-Rated Health of 

patients suffering from multiple sclerosis, thymoma, sleep disorders. 

Modulation of the microbiota composition during treatment can control 

the severity of gut inflammation and disease symptoms in a mouse 

model of experimental autoimmune encephalomyelitis. Combined 

problems in the development or function of both the central nervous 

system (CNS) and the immune system may be associated with 

neurological disorders, such as schizophrenia, autism, and Alzheimer's 

disease, during early-life development. Taken together, these findings 

underscore the potential for ameliorating gut-brain axis diseases by 

enhancing communication along the gut-brain axis [220, 221, 222, 223].  

Cardiovascular disease prevention 

Microbiome-centered strategies have been proposed to reduce 

cardiovascular disease (CVD) risk. A microbiome-based model for 

CVD risk prediction identified disease-associated biomarkers and a 

pathogenic pathway linking microbiome changes to atherosclerotic 

risk. Several approaches modulating the disease-related risk factors in 

the microbiome are currently established or have been recently 

reviewed. These include strategies targeting hypertension, 

trimethylamine-N-oxide (TMAO) production, lipid metabolism, and 

metabolism of metabolic hormones (e.g., leptin, resistin, and 

adiponectin) involved in atherogenesis, as well as microbiome 

interventions aiming at atherosclerosis. Moreover, risk reduction has 

been suggested for specific azole drugs and probiotics designed for 

cholesterol management. However, further research integrating multi-
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omic and multi-dimensional microbiome data is desired to elucidate 

mechanisms of action and identify specific targets for therapeutics, or 

tailored microbiome prescriptions, employing microbiome control in 

conjunction with classical risk-factor intervention. 

In addition to these bottom-up approaches focusing on specific 

contributors, systems-level strategies targeting the microbiome as an 

interconnected ecosystem have been assessed for modulation of the 

leading cause of CVD, namely, hypertension-an early and prominent 

risk factor of atherosclerosis-by characterizing the compositional and 

functional shifts of gut microbiota in animal models of hypertension 

and classifying the specific metagenomic-metabolomic signatures 

associated with hypertension. The results form a basis for developing 

a multi-targeted, microbiome-prescriptive dietary strategy to prevent 

hypertension. Taking into consideration the multitude of proximate 

factors discovered in the gut microbiome and its ability to co-modulate 

multiple complex diseases concurrently, a master modulator designed 

to cover multiple diseases, including CVD, may perform better than 

tailored microbiome interventions targeting specific conditions. [224, 225, 

226, 227] 

Neurodegenerative and mental health disorders 

Alterations in microbiome composition and activity have been 

implicated in various neurological and neuropsychological disorders, 

increasingly studied under the umbrella of the gut-brain axis. 

Visualization of microbes in the central nervous system supports a 

causal role, and fecal microbiota transplantation can modulate 

behavior. A potential bidirectional mechanism has emerged, with 

depression and anxiety potentially altering microbial communities in 

addition to the reverse effect. Microbiome-derived microbial 

metabolites, particularly tryptophan degradation products, can affect 

nervous system development and function, and their administration 

may confer protective effects against multiple conditions. AI-based 

modeling stratification approaches can identify potential microbiome-

based treatments for severe mental disorders. Microbiome modulation 

potentially offers preventive action against neurodegeneration and 

associated cognition decline. Elucidation of the underlying 



 

Page | 58 

mechanisms enables targeted clinical trials, presenting a promising 

means of delaying the onset or reducing the severity of 

neurodegenerative disease. 

Evidence from multiple cohorts indicates that the composition and 

functionality of the gut microbiome are different in patients with 

schizophrenia, Alzheimer’s disease, Parkinson’s disease, and autism 

spectrum disorders compared to healthy controls. Causal links can be 

established by demonstrating the presence of the microbes in the 

nervous system and the ability to induce behavioral changes in germ-

free animals by fecal microbiota transplantation. There are, however, 

additional observations of altered gut microbiome composition and 

function in patients with depression and anxiety. Most studies support 

the hypothesis that microbiome signals influence psychological health, 

but few explore the inverse. Machine learning methods can answer 

questions related to stratification and prediction based on the 

microbiome on both sides of the causation chain. [228, 229, 230, 231] 

Cancer prevention and immunomodulation 

Microbiome-directed preventive approaches against cancer. 

Growing evidence points to a role of the human microbiome in cancer 

onset, progression, and therapeutic response. This has prompted 

research aimed at minimizing cancer risk via microbiome modulation, 

including the transplantation of healthy microbiotas. The bacteria 

Fusobacterium nucleatum and Peptostreptococcus anaerobius stand out 

for their positive association with cancer, serving as potential targets. 

Diet, the use of probiotics or prebiotics, and lifestyle interventions 

represent additional preventive strategies. 

Epidemiological studies have suggested that diet can affect the risk 

of certain cancers through modulation of the microbiome. The 

association of Synlogic's engineered strain of E. coli with a multiplex 

cocktail of common antitumor agents in preclinical models of AML 

also points to the potential of microbiome modulation to improve 

tumor therapy. [232, 233, 234, 235] 
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Chapter - 12 

Diet, Lifestyle, and Environmental Influences 

 

 

The complex interplay between diet, lifestyle, environment, and the 

microbiome is receiving growing attention. Causative connections are 

beginning to emerge among diet, microbiome composition, and 

immune parameters. The microbiome modulates the association 

between dietary components and allergic disease, while various dietary 

groups affect the interactive role of the microbiota and the risk of 

developing asthma. Integrating dietary exposures, microbiome data, 

and immune response into a unifying system through AI may facilitate 

the development of personalized diet strategies to reduce the risk of 

immune diseases. These components can thus become parts of a 

personalized decision-support system, predicting the effect of 

nutritional changes on health status. 

Physical activity and circadian rhythms also influence the gut 

microbiome composition, indicating that both external (e.g., pressure) 

and internal (circadian oscillation) signals together modulate the gut-

dwelling microbes. Changes in the environmental microbiome 

associated with urbanization and lifestyle hazards also exert strong 

impacts on human health. The use of biopolymers made from starch 

after microbial fermentation with probiotic strains including 

Lactobacillus rhamnosus GR1, Lactobacillus acidophilus, and 

Lactobacillus plantarum has been proposed as a preventive measure to 

protect the gut from gut-use-associated antibiotic treatment and for 

potential readjustment after such treatments. In general, digital health 

is an opportunity for a full integration of sensors, microbiome and 

health data, allowing for continuous health monitoring, feedback-

controlled microbiome modulation, closed-loop interventions, 

integration of interactions and relationships between different 

parameters, and active smartphone-based interaction between patients 

and physicians. [236, 237, 238, 239] 
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Diet-microbiome-immune interactions 

Diet is a crucial modulator of the microbiome and, consequently, 

can have a strong impact on the immune system. The findings of human 

and animal studies that explored how dietary factors influence the 

microbiome and which dietary constituents are key modulators of 

specific immune decisions have been compiled. Causal pathways 

connecting diet, microbiome, and inflammation can now be modeled, 

paving the way toward personalized nutrition planning that takes the 

dietary-microbiome-immune relation into consideration. Moreover, an 

AI-assisted decision-support platform can be envisioned that will 

enable individuals to receive personalized nutrition guidelines. This 

platform would aid the consumers wishing to find diet-lifestyle choices 

that improve health and well-being. 

The introduction of a wide array of synthetic and natural 

compounds through the diet substantially impacts the composition and 

activity of the microbiome. The food composition and dietary habits of 

a population can alter the composition of the gut microbiome over time. 

The type of main dietary pattern consumed by the subjects of each 

study influences not only the community structure but also the 

composition and predicted functionality of the gut microbiome. Certain 

dietary constituents such as specific lipids, carbohydrates, polyphenols, 

and proteins have now been linked to specific taxonomic groups within 

the gut microbiome. [240, 241, 242, 243] 

AI-driven personalized nutrition 

Diet is a major determinant of the microbiome, and in turn, the 

microbiome regulates nutrient absorption and metabolism. Microbial 

dysbiosis has been shown to contribute to several chronic ailments, 

including allergies, type 2 diabetes, metabolic syndrome, 

cardiovascular disease, inflammatory bowel disease, obesity, and non-

alcoholic fatty liver disease. Causal pathways between microbiome, 

diet, and immunity have been explored extensively, allowing the 

identification of key metabolomic features as predictive biomarkers of 

allergic disease and immune tolerance. 

Microbial-based personalized dietary recommendations and 

decision-support systems may therefore improve health outcomes. 
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These systems rely on various types of nutrition data, including dietary 

intake, microbiome composition, enterotype clusters, and nutrient 

concentrations of biological fluids. Feedback mechanisms based on 

combinations of physiological indicators can boost adherence to 

dietary strategies and increase the likelihood of achieving clinically 

relevant outcomes. Predictive models that incorporate external 

environmental factors, such pollution and antibiotic exposure, allow 

the elaboration of personalized dietary recommendations that take all 

components into account. Finally, digital tools with feedback control 

represent the next steps in this field since they allow for real-time 

closing of the nutritional loop and enhanced decision-support capacity, 

thereby promoting improved health outcomes. [244, 245, 246, 48, 244, 245, 246, 48, 

247] 

Physical activity and circadian rhythm effects 

Continuously collating data on physical activity and circadian 

rhythms shows these processes shape the composition and active states 

of the gut microbiome, which in turn influence health and disease risk. 

Personalized lifestyle recommendations can thus be generated by using 

microbiome changes as intermediary signals. 

A growing number of studies point to complex and dynamic 

relationships between the temporal patterns of bodily functions and the 

community composition and operation of the human microbiome. 

These relationships extend beyond the well-established connections 

between diet and the composition of the gut microbiome. Variations in 

physical activity levels-including both types of activity (exercise 

training vs. limited physical activity) and modes of activity (aerobic vs. 

resistance training)-were linked to fluctuations in the diversity, 

composition, and activity of the gut microbiome. Key factors deserving 

special emphasis include circadian cycles and sleep duration. 

Lifestyle patterns-such as food intake, sleep, physical activity, and 

circadian rhythm-are all deeply associated with human health and 

disease risk. The ongoing development of digital health, wearables, and 

biosensor technologies is now making it feasible to monitor these 

patterns in real time. As these lifestyle measures are continuously 

collected in very large populations with diverse diseases and 
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ethnicities, they can serve as training data for AI models. In addition to 

direct effects on health, real-time lifestyle data can also be integrated 

as intermediaries affecting the composition and operation of the gut 

microbiome, in combination with other data modalities. 

Environmental exposures and microbiome shifts 

The environmental exposure factors affecting the microbiome 

include pollution, antibiotics, and urbanization. Community-level 

approaches integrating information from different research domains, 

including microbiome profiling, cohort studies, multivariate 

association testing, multiplex laboratory experiments, exposure 

assessment, estimating effect size, and down-sampling caused 

substantial shifts in the microbiome at the city level. Airborne 

particulate matter emitted by traffic indicated a positive effect on the 

abundance of potential pathogens in individuals living at different 

distances from the traffic polluters. Biomass burning and engine-

related traffic pollution have been found to be associated with 

mucophilic and nasal Klebsiella species. Concentrations of burn and 

traffic markers such as potassium and indium in the air were positively 

related to the frequencies of a wide range of febrile illnesses and simian 

virus 40 in the inhabitants of the city of Kolkata. The commensal 

microbiome may help to establish who can tolerate superinfections 

after extreme air pollution exposure. It has been established that 

pathogenic infection risk increases when community-living fauna and 

flora become old and lack biodiversity-creating stressors like fire and 

flood. 

The industrial development of urban centers, using motor vehicles, 

power plants, and thermal power stations, has raised sulphur and 

nitrogen concentrations in air to toxic levels and led to superinfections 

of human and animal pathogens. Long-term exposure to excess sulphur 

and nitrogen from various sources was associated with an increased 

risk of multiple infections in children, and sampling from the natural 

vegetation indicated a 2000-fold increase in the sulfur-oxidizing 

bacterium Thiobacillus thiooxidans. The incorporation of healing 

practices into public health to mitigate or control the effects of the 

urbanization-associated combinations of pathogenic pollution sources 
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has been stressed. Children astride the Ganges River have been 

subjected to heavy burdens of infectious diseases, suppressed 

immunity, and increased consumption of antibiotics. [248, 249, 250, 251] 

Behavioral data integration in AI models 

Should encompass subject privacy and data protection when 

individuals participate in studies, long-term collection, and the type of 

data collected. Behavioral data can greatly improve the accuracy and 

practicality of the assigned task. Data fusion can strengthen the ability 

of a single model to reason across the modal in different ways. 

However, biases in the samples that violate the fair and just principle 

or insufficient samples may greatly reduce the prediction capability of 

the model. 

Individuals participating in studies should provide analysis plans 

or requests to investigators before the collection of behavioral data, 

including the duration of the collection, the prediction model needing 

data, the type of data needed (e.g. characters, response patterns, 

physical activity, sleep habits, or nonspecific activities), and sampling 

frequency. Long-term collection of such data will improve the practical 

aspect of using data to predict the success of the disease. The choice of 

the type of behavioral data is largely data dependent. For example, if 

the prediction model is trained with time series information (e.g. blade 

signal of some affection), then using a single blade signal as 

compensation will only add noise instead of enhancing the model. If 

data from multimodal sources are fused into a single pipeline, then the 

amount of data used in the analysis should be as big as possible to avoid 

over-fitting. [252, 253, 254, 255] 
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Chapter - 13 

Digital Health, Wearables, and Real-Time Microbiome 

Monitoring 

 

 

Integration of wearable and biosensor data; specify data streams 

and harmonization needs. 

Instruments worn or implanted by users capture digital biomarkers 

indicative of vital parameters such as health status and risk, lifestyle, 

and environmental factors. Wearable and stationary devices for 

monitoring metabolism, physical activity, heart activity, 

neuromuscular activity, and many other biochemical and physiological 

processes are being explored. These low-cost and low-impact data 

streams can be integrated into the AI models as additional features for 

prediction and stratification. Data from mobile sensors coupled with 

saliva sampling will give information about the oral microbiome along 

with preventive support options, suggesting preventive measures 

associated with microbiome-related diseases. Continuous and 

automatic health data collection using wearables will enable real-time 

monitoring of health status by clinicians and care providers, producing 

alerts if any information is out of normal ranges. 

Development of closed-loop systems that offer personalized 

intervention procedures is also needed. Such an approach can help 

design feedback-controlled interaction plans: the AI models used for 

predicting responses to natural or synthetic microbiota freshwater can 

be integrated with wearable sensor data to modulate the microbiome 

safely through nutrition, pro-, pre-, syn-, or postbiotics in a closed-loop. 

Continuous monitoring of patients by combining mobile health 

platforms with AI-driven coaching will help motivation and adherence. 

Ensuring data security and ownership (privacy, governance, control, 

and consent) will enhance patient acceptance and engagement. [256, 257, 

258, 259, 256, 257, 258, 259] 
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Integration of wearable and biosensor data 

Wearable devices and biosensors monitor diverse dynamic health 

metrics in population microbiome studies. Continuous heart rate, 

activity, sleep, and body temperature data from wearables outline 

short-term variations, while smart body-washers quantify daily skin 

microbiome disturbances. SCFA and hormone levels, sensed in breath 

or sweat, reflect gut-brain axis activity as well as metabolic and 

circadian states, enabling continuous, fine-resolution health 

representation. Continuous glucose monitors provide near-real-time 

glycemic ranges, generating predictive windows framing events of 

interest for associated microbiome dynamics. Sweat glucose-

microbiome paths enable the training of prediction models. Integrating 

multimodal wearable data with microbe-targeted predictive models 

refines associations between dysbiosis, HDL, and lactate/propionate 

profiles. 

Wearable data help define and track a person’s health from 

multiple angles, creating a feedback system based on the subjective 

sensation of well-being or clinical needs. Such information provides an 

unprecedented opportunity for continuous health surveillance, real-

time detection of risk factors, and timely alerts. Additional mobile 

health applications can assess mental status via communication style, 

coded expressions, and sentiment analysis, along with possible 

semantic analyses for edge computing. Such advanced capabilities can 

improve adherence to treatment or supervision by coaching individuals 

integrated into digital health systems that generate alerts based on 

wearable data. 

Combining computer-zoologue apps with biosensors, social 

activities or behavioral changes-such as circumstantial contacts, 

interactions, or present emotional state-also allows monitoring of 

microbiome-affecting factors and autonomously provides feedback via 

preferred social channels. Integration into a decision-support system 

capable of considering factors influencing changes in a targeted 

microbiome can provide clinical feedback and advice to individuals 

throughout daily life-such as feed-exercise balance and external 

exposure-enabling continuous data collection from many players and 

supporting other dynamic data cores. 
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Continuous health monitoring systems 

Integration of wearable and biosensor data enables continuous 

health monitoring systems with real-time alerting and interpretative 

capabilities. Collected data constitute new input layers for AI models, 

providing an energetic real-time overview of the individual conditions 

without exposing sensitive personal data in the models. The detected 

health trends are interpreted by specialists, and alarms are generated 

for irregular data patterns at an early stage. The information is 

continuously shared with the user through a smartphone interface and 

an optional wearable device. These systems empower the user and 

increase motivation to improve health condition and lifestyle. 

To maintain a healthy lifestyle and pre-empt the occurrence of 

diseases, the ideal approach is to stimulate the self-correcting 

mechanisms of the body or modify specific health determinants in a 

positive direction. An optimal strategy is to implement a closed-loop 

health-regulating system for microbiome modulation: a system that 

collects signals about the health condition and conveys them to the AI 

model that recommends the precise action needed to restore balance-

e.g., modulating the diet or physical activity in real time, feedback-

modulating the microbiota, or suggesting the use of specific 

supplements or pre-or probiotics. [260] 

Feedback-controlled microbiome modulation 

Feedback-controlled interventions could maintain continuous 

modulation of the microbiome. Automated identification of deviations 

from target microbiota profiles would trigger closed-loop 

interventions, with actions governed by user-defined risk thresholds 

(for example, potential disease relapse). Such systems should also 

incorporate additional safety checks to avoid excessive deviation from 

baseline microbiota structure, which could lead to unintended 

consequences. Initial interventions would remain advisory, providing 

personalized recommendations for diet, lifestyle, and supplementation. 

Over time, however, user engagement and trust in the system could 

support adoption of automated feedback responses, such as provision 

of selected supplements via biosensors or smart appliances. Eventually, 

permissioned access to wearable data streams from all users across 
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clinical cohorts could facilitate identification of trigger events, 

enabling preventative dual-targeted microbiome modulation at the 

population level, accordingly adjusted for socio-environmental 

conditions and other risk factors. [261, 262, 263, 264] 

Mobile health platforms and AI coaching 

Mobile health platforms enabling habitation normally do the 

desired task, decreasing user interaction overhead and improving 

overall experience. Data collected via wearables or biosensors are 

integrated into a bottom-level of the work. Even user-assisting, patients 

should actively monitor their health condition and provide feedback 

about unexpected changes, such as unusual biometric values, 

symptoms, or risky behavior. Alerts activation should be conditioned 

to error rates, minimizing false-positive or false-negative situations. 

Continuous health fraction is charged with autonomous interpretation 

of signals: scoring functions suggest modifications for the next period, 

supporting optimization of probiotics, prebiotics, or synbiotics intake, 

active drug intake, or other modulatory agents. Even users are not 

connected to the system, abnormal health fractions alerts are sent. 

Mobile health platforms engaged to promote adherence are close 

to coach support and to random reinforcement. A reporting 

environment is provided to patients with intuitive UX. Information 

from physiological or contextual factors is periodically integrated into 

a prediction function, suggesting personalized guidelines to change 

behavior or diet. The underlying AI model is regularly updated, aiming 

at the user. Moreover, information from the platform guides sampling 

reducing data privacy issues, by using sensitive data for the specific 

individual evaluation of attraction magnitude for a determined food. 

Achievements from patients in overcoming health challenges indicated 

by the prediction function are reported, increasing motivation to 

continue with the assigned actions. Concerns related to data usage for 

AI model updating are clearly stated to users to obtain full consent 

during sampling. [265, 266, 267, 268] 

Data security and patient engagement 

Protecting the privacy and security of data collected from 

individuals who engage with Digital Health (DH) systems is 
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paramount. DH and AI-based systems require access to sensitive 

patient information and biomarker data and continuously collect 

information on patients’ behavior, habits, and environmental 

conditions. Residents are often not aware of the breadth of information 

collected and the potential uses of that information, leading to a 

possible loss of confidentiality and concern related to the need to share 

private data with their health care providers. Concerns about data 

security, loss of confidentiality, or the approval of unwanted ads after 

online tracking may affect the adherence to mobile health or digital 

health systems. It is, therefore, crucial that these types of information 

are protected and that patients are aware of possible uses and risks 

associated with their private information. 

Trust depends on an understanding of how private information is 

stored, used, and potentially shared with third parties by the company 

that collects it. This is especially important for sensitive data provided 

by digital health systems (CHAPITRE 14). As a result, adherence 

responses may be positively affected if the company has strong privacy 

policies. It is important to design mobile technologies and wearable 

systems that are supportive and respectful in their interface with users 

and that provide users with a virtual environment enabling active 

learning and user engagement. [269, 270, 271, 272] 
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Chapter - 14 

Ethical, Legal, and Regulatory Considerations 

 

 

Defining data privacy remains a challenge. Stakeholders disagree about 

which data should belong to the patients who generate it. Some 

consider the evidence generated by wearables and other biosensors 

designed to monitor health states for the sake of the users also their 

private data. Others believe that the results these devices closely 

resemble the outputs of clinical examinations or laboratory tests, which 

thus should belong to the health systems. Collaborative and democratic 

governance policies could help define the ownership in an inclusive 

manner, ideally establishing a baseline that varies across jurisdictions 

depending on local priorities, values, and willingness. Such policies 

could also define consent models regarding the ingestion of image and 

sensor data that some digital health applications need in order to deliver 

meaningful information regarding the patient. Users should opt in or 

out of digital health dashboards and related decision-support 

applications. 

Bias in AI decisions can come from many sources. Health data 

population unbalance may lead to under-represented but safer 

population samples. Opacity in the pipeline may lower the level of trust 

and acceptance in the result-or the distribution method. If interventions 

can effectively benefit only certain categories or groups, yet are 

discussed with a consumer/customer logic rather than a social logic, 

mainly benefitting a wealthy category while neglecting overall public 

health responsibility, society may question their acceptance. Such 

issues need to be carefully addressed in order to safeguard justice and 

ensure a cross-distributive effect. If detected and explained, public 

health authorities can mitigate the unbalance. What remains unclear 

will always enhance the gap of untrustworthiness. The responsibility 

of justice must be properly assigned to the party being investigated or 

treated. Hence, bias must always be addressed. 
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Regulatory agencies must adapt traditional frameworks that 

designed, validated, and approved classical medications and 

interventions, since the approval and release systems for microbial pills 

may pose different and more serious questions. Experimental or pilot 

therapeutic actions may incorporate the use of signalling, acting in a 

spatio-temporal manner, for treatment purposes, which constitute a 

legal grey area never before envisaged. External signalling may 

stimulate or inhibit certain pathways, or restore patient's crossed-

signalling equilibrium. Interestingly, a recent report proposes a new 

category of regulators, termed "DCR-Data Competence Relations", to 

oversee such actions. Aimed at data-driven development of 

microbiome-focused therapeutics, a DCR should guarantee safety 

throughout the whole production chain, from marketing to 

commercialisation, and at all later stages, if any. [273, 274, 275, 276] 

Data privacy and ownership 

The rights and ownership of health data, especially regarding 

medically relevant data, are inherently a sensitive subject. To some 

extent, healthy members of the population, patients, government 

entities, nonprofit and commercial organizations, and health 

universities contribute to data generation. At the same time, data-

pooling policies vary from protocol to protocol. Individual companies 

may retain exclusive intellectual property without sharing returns. 

Hence, the public is deprived of self-ownership of the data they share 

but also becomes financially liable for the investments by other natural 

or legal entities. With the consumption of countless supporting 

biological samples by the common citizen, is it not natural for them to 

receive the benefit of disclosed research results built upon their data? 

Some citizens and institution rulemakers wish to remain entirely 

public in health issues and the virus prevention strategies and readiness 

efforts for future pandemics. Others are very reluctant as they value 

privacy, wish to remain secretive, and ask for exclusivity. Those 

wishing to give value to their biological signal for the entire population 

or for a specific group should have freedom of use of one of the 

embodied split returns. The elaboration of fine metadata for a wide 

population with the help of medical specialists and commercial 
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companies offering aids in their platform could help in fulfilling 

requests for cohorts. In countries whose legislation allows sensitive 

health places and companies, such data can be owned for a specific 

purpose. [277, 278, 279, 280, 281] 

Ethical challenges of AI-guided interventions 

The development of AI-assisted biomedical applications may 

introduce ethical issues, including bias in the training database that 

affects prediction quality, lack of representativeness in the population 

undergoing treatment as a result of model-facilitated stratification, and 

unaccountable output when patients receive the intervention blindly 

targeting the AI-estimated effect within an unidentified mechanism. 

Engelbart's proposition regarding machine-assisted augmentation of 

human intellect aims at promoting human creativity by ensuring that 

important decisions such as treatment designs, stratifications, run 

predictions, and interventions are made by intelligent humans 

supported by advanced AI methods and models that carefully present, 

visualize, and interpret for humans the analyses of existing knowledge. 

In addition to ensuring that decision-making remains under human 

responsibility, clinical intervention strategies minimising control 

variables and focusing on free will in AI-guided decision support 

systems may also help to alleviate AI-related ethical problems by 

minimising bias and allowing intervention from a higher layer AI 

model trained on the user model of the first-layer decision support 

system. These and other factors affect the level of public trust and the 

rapid acceptance of AI-assisted digital health strategies. [282, 283, 284, 285] 

Regulatory frameworks for microbiome therapies 

While microbiome research is advancing rapidly, the regulatory 

frameworks for microbiome therapies remain limited and 

heterogeneous across jurisdictions. Harmonized regulations are needed 

to facilitate global research, development, and commercialization. 

Regulatory authorities should adopt a science-based approach specific 

to microbiome therapy without the bias of traditional pharmaceutical 

development. The identification of health-promoting microorganisms 

and updates of regulations require a clear overview and in-depth 

analysis of the role of the microbiome in health and disease. 
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Current regulatory frameworks for microbiome applications vary 

considerably among different jurisdictions. The use of pro- or 

prebiotics is generally classified as a food product. Fecal microbiota 

transplants constitute a therapeutic product in Europe and North 

America and are regulated accordingly. The FDA considers fecal 

microbiota transplantation a biological investigational new drug, for 

which any clinical trial must follow good manufacturing practices. 

Microbiome-based therapeutic consortia, e.g. a defined consortium 

manufactured by Synlogic Pharmaceuticals for treatment of urea cycle 

disorders, are being developed in strict compliance with regulations for 

pharmaceutical products. Such therapies must meet conventional 

criteria for safety, efficacy, and/or quality. The European Medicines 

Agency’s Committee for Advanced Therapies considers microbiome 

therapy as a combined advanced therapy medicinal product, which 

contains cells or tissues and acts principally by metabolic, 

pharmacological, or immunological means and that is not a medicinal 

product as defined in Regulation (EC) 726/2004 [286, 287, 288, 289, 286, 287, 288, 

289]. 

Safety and long-term risk assessment 

Long-term effects of AI therapy-associated risks must be carefully 

evaluated. Pre-market testing runs from nonclinical trials targeting 

safety assessment through to clinical trials for safety and efficacy. 

Preclinical testing is limited and focused on cell and animal studies. 

Animal studies evaluate carcinogenic, reproductive, developmental, 

and mutagenic potential as well as potential effects on immune 

function, neurobehaviour, and developmental neurotoxicity. Concerns 

arise with viral vector or gene therapies, especially with long-term 

persistence in the body, potential toxicity in the treated population, and 

spread to local and distal populations. Post-market surveillance is the 

only way to capture long-term effects of these strategies. Approaches 

must follow principles similar to those of the clinical trial period. 

Vulnerable groups, such as pregnant women, infants, and immune-

compromised patients, must be studied in depth. [290, 291, 292, 293] 

Biological therapy observations turn to hosts and bacteria. Any 

therapy is regulatory status-changing for the (host) person-the treating 
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doctor must consider their usual obligations when applying AI-guided 

therapy to potentially vulnerable groups. Intensive correspondence 

with external experts to assess the risks of assigning persons to atypical 

therapy is essential. This same obligation is present in relation to the 

treatment of children, especially babies, and when mothers in the last 

trimester of pregnancy, infants, or immunocompromised persons enter 

a trial. 

Public trust and societal implications 

Support for and acceptance of AI-guided microbiome-based 

innovation will ultimately depend on public trust. The engagement of 

stakeholders in any service, including those applying AI in human 

health, disease diagnostics, and treatment, is essential. It is therefore 

crucial to involve professionals, scholars, and citizens from different 

religious faiths, social and cultural groups, and academic disciplines in 

discussions and media talk shows, led by credible scientists who are 

able to present the potential benefits, risks, and societal implications of 

this technology. 

Responsibility for the conscious design, implementation, 

monitoring, and regulation of AI-based, microbiome-guided service-

delivery systems remains with the scientific community. Its primary 

objective must be to allow all aspects of civilization that are dependent 

on health to be maintained, optimized, and sustained with minimal risk 

of serious hazards and rapid development of effects that may seriously 

endanger life or civilization. Remaining risk that may be unacceptable 

from a social point of view must be regulated at the level of the society. 
[21, 294, 295, 296] 
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Chapter - 15 

Clinical Translation and Personalized Medicine 

 

 

The clinical translation of AI-driven microbiome interventions requires 

careful trial design to ensure the safety and efficacy of these therapies. 

Well-defined clinical endpoints, randomization, and subgrouping 

criteria are essential for obtaining interpretable results, and patient 

stratification during trials can help generate a wider range of AI-

proposed therapies with different compositions tailored to individual 

patients. 

To aid the transition of microbiome-based interventions into 

routine medical settings, robust integration and communication 

pathways with healthcare providers are needed. Reimbursement 

strategies for therapies should be considered, and the use of open-

source platforms and applications is encouraged to facilitate access for 

any interested party. A thorough assessment of the economic viability 

of these technologies is crucial, and careful consideration of all 

necessary actions, procedures, and resources required to meet 

regulatory demands will help circumvent potential roadblocks during 

implementation. 

The clinical trial design for AI-driven interventions focuses on 

determining the safety and efficacy of patient-manipulating consortia, 

while stratification of patients in the studies helps generate a wider 

array of therapy candidates for the AI engine. Both the actual prediction 

of therapies and their validation through clinical trials are also 

essential. Several types of trials, endpoints, and stratification criteria 

can be used to investigate and validate the different proposed 

intervention categories, such as probiotics, prebiotics, synbiotics, and 

postbiotics. 
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In a personalized approach, during therapeutic development and 

testing for patients affected by possible immune disorders, immune-

related medications in the market, their effect profiles, and subsequent 

microbiome alterations can be used to implement an AI-guided design 

that further personalizes the patient treatment. This approach increases 

the microbiome- and disease-related knowledge in AI models, enabling 

the generation of other therapies for stratified groups. 

Microbiome-based interventions are expected to be integrated into 

public health systems within specific group health programs assisted 

by wearable technology, where monitoring health state information of 

multiple patients with AI can warrant information about different 

health states of the population, and as a consequence facilitate pattern 

detection. This provides a feedback control loop between the health 

state detected in the population, and their influence on the population 

microbiome, increasing the chance of success of the proposed 

interventions or recommendations. 

Finally, as future perspectives, the safety of any of the predicted 

therapies should undergo clinical trials, but also the overall AI analysis, 

including the hypothesized population responses, should become part 

of clinical science and human health, integrating predictions with 

disease heterogeneity, proposed causes and prevention measures. [297, 

298, 299, 300] 

Clinical trial design for AI-microbiome therapies 

Clinical studies to assess the safety and efficacy of next-generation 

microbiome-targeted interventions guided by artificial intelligence 

must be designed with sufficient statistical power and robustness. All 

trials should have a secondary aim to determine the relationship 

between microbiome composition or function and treatment response, 

enabling stratified analyses of treatment efficacy or toxicity. 

A rigid parallel group design with treatment versus placebo is 

appropriate for most trial endpoints, including changes in clinical 

biomarkers, quality of life, and, importantly, incidence of the primary 

disease. Sufficient baseline observations should be evaluated to support 

predictive modeling of secondary disease onset events and enrichment 
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of patient groups likely to benefit from treatment. When earlier clinical 

intervention is justified, a placebo-controlled randomized withdrawal 

design with relapsing patients receiving treatment after experiencing 

an exacerbation can counterbalance risks and reduce costs. An 

alternative adaptive trial design incorporating interim analyses can 

withstand greater between-group heterogeneity and accounts for likely 

alterations in treatment effect over time. 

AI prognostic and predictive models enable investigations of other 

microbiota-related factors and the use of enriched groups of “super 

responders” or raditional trial designs involving treatment versus 

placebo. Further, AI-driven approaches can identify unexpected 

adverse toxicological events and potential biomarkers of drug-induced 

patient sensitivity, contributing to greater patient safety and more 

reliable clinical evidence. [301, 302, 303, 304] 

Patient stratification and treatment personalization 

Are crucial for designing efficient microbiome-related therapies. 

Individual differences in microbial communities can affect the onset or 

modulation of immune disorders before their clinical detection. These 

observations suggest that microbial profiles in a defined population 

both predict disease development and are linked to food preference, 

physical activity, and circadian rhythm. To leverage these 

relationships, microbiome profiles should be routinely measured 

before clinical detection of immune disorders, and links in both 

directions considered, prompting the need to carefully define 

subpopulations during training of predictive models. Empirical 

validation of their ability to delineate patient subgroups allowing for 

distinct pathogenic mechanisms would further enhance 

implementation. 

Clinical benefits arise not only from achieving a reliable distinction 

among subpopulations but also from subgroup-specific anticipation, 

prevention, and treatment of disorders. External longitudinal cohorts 

can facilitate detection of patients with immune disorders prior to their 

OKT3 clinical diagnosis. Age-specific patterns would support the 

identification of microbiome-based interventions targeting 

physiological or clinical effect [305, 306, 307].  
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Integration into healthcare systems 

Requires the development of a workflow establishing the need for 

the intervention, a patient stratification and recruitment step, effective 

remediation, follow-up, and a reimbursement model. Integrating 

advanced analysis of the microbiome into healthcare systems can be 

achieved by establishing a division of the healthcare system 

responsible for continuously monitoring large populations of healthy 

individuals for changes in microbiome composition and function. 

Longitudinal studies have shown that dysbiosis in healthy individuals 

is usually absent for long periods of time, and, when present, may be 

reversible through diet or lifestyle changes, thus making the time 

window beneficial for early detection of disease and targeted 

preventive action. Such a monitoring scheme would be far easier and 

less expensive than testing everyday bodily fluids for the myriad of 

biomarkers explained above. Monitoring data could also guide healthy 

individuals when purchasing new diets during their lifetime. 

Digital health platforms that use personal data from wearables and 

biosensors would be equipped to send alerts to individuals in need of 

further assessment. A closed-loop system could, for example, send a 

specific set of questions, offer microbiota-modulating interventions, 

recommend a certain diet, and, provided things still remain abnormal, 

redirect the individual to an appropriate medical professional - all in 

near real time. Special mobile health platforms helping patients with 

chronic conditions using AI chatbots or nurses have been developed 

and could be adopted for this purpose as well. Major concerns, 

particularly with these systems, remain data protection. Personal health 

information must always be kept confidential and secure. The user 

should have complete control over the data and be able to decide what 

to share, with whom, and for what purpose. [308, 309, 310, 311] 

Cost-effectiveness and accessibility 

The economic evaluation of AI-enabled microbiome therapies 

indicates that smartphone-compatible health systems providing 

personal microbiome feedback could measurably change participants' 

health at relatively low societal cost. Key drivers of cost-effectiveness 

include the marginal cost of monitoring, the sustained level of behavior 
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change and its associated health gain, and the increase in detection of 

adverse health events related to the microbiome. Given the growing 

interest in predictive medicine, the modest cost of providing continued 

monitoring, and the precursor development of expansive databases of 

population-wide enterotypes, the proposed framework can be extended 

to other predictive medicine domains. 

Closing the cost gap between countries with different levels of 

wealth will require innovative research that embraces technological 

advances in miniaturization and sensor design. The delivery of AI-

guided microbiome diagnostic tests could also represent an attractive 

business case for traditional health players. Public insurance schemes 

covering the costs of diagnosis and treatment using these tests could 

help the technology reach large populations in developing countries 

and be beneficial for the industry. [312, 313, 314, 315] 

Barriers to clinical adoption 

Barriers to the clinical adoption of AI-guided interventions to 

restore intestinal immune homeostasis and support the prevention of 

eczema and other immune disorders remain. Processing and integrating 

heterogeneous data types necessitate extensive technical expertise, 

which is typically unavailable in hospitals, undermining the world-

wide implementation of the proposed predictive modeling pipelines. 

Furthermore, when personalized systems are developed, even control-

matched populations are relatively dissimilar. As most of the factors 

associated with the occurrence of diseases that are clearly linked to 

other factors are relatively unchanging, it is possible that the 

generalizability of these systems could be improved by developing 

separate components for each populations, reducing both the 

complexity of the input to the models and any noise that would be 

generated by keeping the subject groups balanced. 

In addition, the procedures tend not to be simple: sample sizes can 

be high, requiring expensive screening tests, and the clamp approaches 

used to develop prediction equations are often complex and time-

consuming, increasing the logistical and cost burdens of implementing 

these procedures for real-time applications. Other approaches-such as 

machine learning models-that use body temperature and accelerometry 
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data-collected in a standard manner-hold greater appeal. These 

procedures are normally simple and low-cost, allowing for large 

sample sizes while providing sufficient information to detect the diet-

microbiome-immune relationships. [316, 317, 318] 
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Chapter - 16 

Future Perspectives and Global Health Impact 

 

 

Next-generation AI-driven and microbiome technologies will 

empower preventive medicine and the management of overall health. 

Continuous analysis of personal and population-level data from 

wearables and biosensors will help improve diet and lifestyle, reducing 

the risk of disease development and progression. AI-supported 

development of personalized diets and real-time microbiome 

interventions will further decrease disease risk-particularly in sensitive 

groups such as infants-and improve vaccine effectiveness. The data-

driven design of safe, efficient microbiota-targeted therapies for 

chronic diseases will enhance clinical outcomes. Widespread 

applications will help reduce the excess burden of disease in vulnerable 

populations. Maintaining global microbiome diversity and health will 

promote the prevention of future pandemics. 

Next-generation AI and microbiome technologies must support 

global health goals: enabling preventive medicine, prolonged healthy 

aging, reduced risk of chronic disease, and attenuated pandemic 

burden. Data from wearables, biosensors, and other sources will inform 

personalized dietary and lifestyle recommendations for healthy risk 

group stratification. Continuous, real-time sampling of microbiome 

shifts will underpin feedback-controlled interventions, maximizing 

effort-reward ratios. Early-life disturbances can be repaired using 

microbiome-modulating strategies, increasing tolerance and inducing 

systemic health. AI-optimized microbiome-directed management of 

chronic diseases will produce long-term health improvements and 

accelerate innovations in the field. Addressing microbiome health 

inequalities among populations will promote overall resilience against 

future pandemics. 
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Next-generation AI and microbiome technologies 

The next generation of AI and machine learning models will 

include various continuously evolving fields. This development 

involves a combination of different systems as well as instruction from 

the users of the AI systems for further customization. As shown by 

Huang Male et al., the latest image-generation AI can accept both 

visual input and language-based input, creating a new multimodal era 

of AI models. Furthermore, the latest ChatGPT version allows users to 

accept voice inputs to produce answers. Enhancing the capabilities of 

existing AI models will help meet the needs of the users. By combining 

the latest vision research, multimodal models will continue to advance. 

Models that can provide commentaries on videos will also be 

developed. In the future, research will focus on learning more about 

humans, participating in tasks, compiling summaries, and deep 

learning. 

AI and machine learning are becoming integral parts of the 

research process. Al systems, which consist of artificial neurons and 

their connection weights, rely on the quality and quantity of the data 

they are trained on for their performance as well as on the model 

architecture and objective function. Well-designed and trained AI 

models can obtain insights, hypothesis-generating clues, and hidden 

underlying principles. Furthermore, these sources of information can 

be monitored interactively and validated experimentally. 

Preventive medicine and healthy aging 

By integrating with data from wearables and biosensors, AI models 

can support continuous health monitoring, dyadic coach-patient 

interaction, and feedback-controlled interventions. Patients wearing 

continuous sensors and feeding data into a digital health platform can 

receive alerts for potential health abnormalities, such as elevated 

glucose levels, by synchronizing digital health resources such as cloud 

computing. A smartphone app uses the developed model to interpret 

and visualize data for the patient and physician. AI models may control 

modulation of the microbiome and other health parameters by 

wearables. 



 

Page | 82 

Telemedicine enables remote consultation and interpretation of 

biodata, which may not be easily interpretable by a non-expert. The 

recommendation system approves actions requiring follow-up and 

indicates potentially dangerous situations requiring hospitalization. 

Adherence to lifestyle and diet recommendations determined by the 

integration of wearables, microbiome data, and other individual health 

information can be assessed and visually presented to the patient. 

Additional recommendations can suggest interventions to 

modulate the microbiome or other parameters. Microbiome modulation 

and other interventions can also be prescribed to prevent identified or 

anticipated disease states detected by AI. Longitudinal development of 

the microbiome and its influence on other parameters may enable the 

design of timed feedback that allow interventions when such symptoms 

appear. Behavioral, dietary, environment, health monitoring, and 

microbiome data can be fused to create new features for prediction 

models. 

Global microbiome diversity and equity 

Microbial world-wide diversity supports human health. AI-based 

applications should ensure inclusion and serve humanity. 

More than 3000 million years of evolution led to the global 

Holobiont. An imbalance can increase susceptibility to various 

diseases, which can be reduced or avoided. Recent progress in 

Biomedical Sciences, particularly AI technology, enables an 

unprecedented understanding of the human holobiont. The microbiome 

can provide insights into a variety of diseases, opening the search for 

new microbiome-based preventive medicine: The Instagram of 

Appropriation. The recognition of the potential for therapeutic 

interventions forms the basis for AI-driven methods for developing 

therapeutic approaches that facilitate this process. But care is needed 

to address the imbalances and not simply extract and appropriate, as 

such unbalanced exploitation can have catastrophic consequences. 

Equitable access to modern technologies is required to sustainably 

ensure the diversity of microbial infrastructure and its role in sustaining 

human well-being. Disruption of the diverse structure would make 
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mankind increasingly more vulnerable. Examination of the effects of 

impairing the infrastructure diversity is urgent: targeting the 

appropriate diversity metrics would enhance potential application. The 

growing microbiome research domain must be translated into 

preventive medicine programs that ensure an ever-decreasing 

likelihood of catastrophic pandemics. 

Pandemic preparedness and immune resilience 

A proactive approach to enhancing population immunity and 

resilience against future pandemics may help reduce disease incidences 

and associated healthcare burden. As repeatedly demonstrated during 

the COVID-19 pandemic, zoonotic and emerging infectious diseases 

are unpredictable and a continual global health threat. Supporting 

immunological preparedness through first-principle designs of 

microbiome-modulating strategies is therefore a timely task. Many 

pathways and factors linking the microbiome with risk of infections 

and vaccination response in children and adults have been proposed. 

Exploring microbiome signatures predictive of clinical infection and 

serological responses to vaccinations could provide a competent 

framework for population-level engineering of tolerance-inducing and 

anti-infective microbiomes that strengthen immune readiness. 

Building collective population immunity before disease outbreaks 

may improve preparedness without resorting to routine vaccination 

campaigns or chemical adjuvants boosting the immune response, with 

long-term benefits in reduced incidence and severity of chronic 

diseases. AI-assisted identification and subsequent longitudinal 

population studies of microbiome signatures predictive of clinical 

infections, immune tolerance, and response to vaccination will guide 

design of intervention strategies targeted toward the associated 

pathways. During such explorations, emphasis should be given to the 

timing and safety of potential interventions, and follow-up studies 

should address persistence and long-lasting effects beyond completion 

of the specific modulation. 

Roadmap for future research and innovation 

Future developments in AI and microbiome research should 

prioritize early clinical trials in AI-based and microbiome-targeted 
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medicine, with a focus on immune and chronic disease prevention for 

healthy populations. The generated pipelines should enable the 

discovery of novel intervention candidates targeting risk factors for 

major diseases, particularly respiratory and metabolic disorders. A 

multidisciplinary global effort should aim to gather a diversity of 

healthy microbiomes and their associated information. These 

populations should serve as search spaces for AI algorithms during the 

design of preventive intervention strategies and healthy aging supports. 

The initiatives should consider the preventive potential of 

nutrition, circadian rhythms, environment, and lifestyle, aiming to 

optimize their contribution to immune resilience. Microbiome-induced 

risk reduction strategies for cardiovascular and neurological diseases 

should be identified through dedicated pipelines. Major known defense 

measures against future pandemics should be effectively supported in 

an extended manner. The overall objective is to create a proactive and 

health-promotion-focused clinical and research environment in 

combination with the knowledge gained from prior pandemics. 
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Chapter - 17 

Conclusion 

 

 

Recent advances in artificial intelligence (AI) provide opportunities for 

novel exploration or resolution of long-standing scientific questions, 

including the inherent complexity of the human microbiome and its 

connections with the host immune system and the development of 

chronic diseases. Microbiome data-generation technologies have 

expanded exponentially in recent years and are expected to continue to 

grow. By harnessing these new approaches and integrating them with 

AI techniques, powerful predictive models could be built to identify 

how the microbiome influences the immune system and risk of chronic 

disease throughout the human lifespan. Equipped with such 

knowledge, it should be feasible to engineer microbial ecosystems to 

support immune health in individuals and populations, thus reducing 

the burden of immune disorders and contributing to the prevention of 

other chronic diseases. 

The human microbiome has a central role in shaping individual 

immune responses and influencing the risk of developing immune-

mediated disorders such as allergies, asthma, and autoimmunity. A 

variety of lifestyle and environmental factors modify the microbiome, 

and targeted probiotic, prebiotic, synbiotic, or dietary interventions 

during early life hold promise for lowering the risk of these diseases. 

Furthermore, the microbiome can modulate vaccination responses and 

the development of immune tolerance, with potential implications for 

vaccine design and implementation. AI modeling approaches should 

enhance understanding of the interactions between the immune and 

microbial systems during healthy and abnormal development and 

enable the engineering of optimal immune-supporting microbial 

ecosystems. 
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