Comprehensive Analysis of Pathogenic Factors Based on Modern Medical Laboratory and Biotechnological Techniques and Their Role in Forensic Detection of Biological Agents

Editors

Ahmed Qasim Hassan

Department of Pathological Analysis, College of Science, University of Kufa, Iraq

Abdulrahman Dhannoon Anees Hussein

Bachelor's Degree in Medical Laboratory Sciences Jadara University
- Jordan

Alaa Abdalhadi Halboti

Department of Medical Laboratory Technology, College of Health and Medical Technology, University of Kut, Iraq

Yasameen Waleed Al-Abedi

Department of Forensic College of Science Wasit University, Iraq

Suaad Modhaher Habeeb

Bachelor's Degree in biotechnology Department of Biotechnology University of Al-Qadisiyah, Iraq

Bright Sky Publications TM New Delhi Published By: Bright Sky Publications

Bright Sky Publication

Office No. 3, 1st Floor,

Pocket - H34, SEC-3,

Rohini, Delhi, 110085, India

Editors: Ahmed Qasim Hassan, Abdulrahman Dhannoon Anees Hussein, Alaa Abdalhadi Halboti, Yasameen Waleed Al-Abedi and

Suaad Modhaher Habeeb

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologize if permission and acknowledgements to publish in this form have not been given. If any material has not been acknowledged, please write and let us know so that we may rectify it.

© Bright Sky Publications

Edition: 1st

Publication Year: 2025

Pages: 122

Paperback ISBN: 978-93-6233-046-8

E-Book ISBN: 978-93-6233-571-5

DOI: https://doi.org/10.62906/bs.book.469

Price: ₹713/-

Abstract

Modern medical laboratory and biotechnological techniques greatly expand knowledge of pathogenic factors, often from disease outbreaks. Their integration with forensic science enhances the detection of biological agents used in crime and as biological weapons. These agents belong to multiple kingdoms, including bacteria, viruses, fungi, and parasites, and cause a variety of diseases with different routes of exposure. Classically, modern clinical microbiology identifies agents in infected material, but innovative methods facilitate identification in different environments and sponsors, corroborate intent, and build dossiers on future crime risk and preparedness.

Techniques for these applied microbiological investigations include culture, amplification of nucleic acids, nucleic acid sequencing, detection of characteristics by virulence or resistance, specific toxicant or antigen immunoassays, and advanced biotechnology (biosensor technology, lab-on-a-chip, and CRISPR technology). An interdisciplinary understanding of the biological agents and the forensic challenges facing health supports the development of new, augmented, and dedicated detection terchnologies more efficient and reliable than previous equivalents.

Contents

S. No.	Chapters	Page No		
	Part - I			
Fo	undations of Pathogenic and Forensic Biology	01-17		
1.	Introduction to Pathogenic Factors and Biological Threats	03-07		
2.	Overview of Biological Agents in Forensic Contexts	08-12		
3.	Host-Pathogen Interactions and Mechanisms of Disease	13-17		
	Part - II			
Mode	rn Medical Laboratory Techniques for Pathogen Detection	19-42		
4.	Classical Microbiological and Serological Methods	20-23		
5.	Molecular Diagnostics and Nucleic Acid Amplification Techniques	24-28		
6.	Genomic and Metagenomic Approaches	29-32		
7.	Proteomics, Metabolomics, and Immunoassays			
8.	Advanced Biotechnological Tools and Biosensors			
	Part - III			
	Forensic Detection and Analysis	43-80		
9.	Forensic Sampling, Chain of Custody, and Biosafety	44-47		
10.	Molecular Forensic Typing of Pathogens	48-52		
11.	Toxin Detection and Biochemical Forensics	53-57		
12.	Case Studies in Forensic Pathogen Analysis	58-80		
	Part - IV			
	Emerging Trends and Ethical Implications	81-122		
13.	Artificial Intelligence and Data Analytics in Pathogen Forensics	82-85		

Ethical, Legal, and Biosafety Considerations	86-91
Future Directions in Pathogen Detection and Forensic Biotechnology	92-95
Conclusion	96-97
References	98-122
	Future Directions in Pathogen Detection and Forensic Biotechnology Conclusion

Part - I

Foundations of Pathogenic and Forensic Biology

The analysis of biological and other pathogenic factors has practical value and is in demand in the context of completely new approaches and modern achievements in the laboratory, microbiology, biochemistry, biophysics and technology of biological diseases. A comprehensive overview is offered considering aspects of pathology, clinical microbiology, biotechnology related to detection of potential biological agents and offering methods of these investigations. These key aspects are integration of biological disciplines, pathogenesis and biotechnological detection of pathogens, with emphasis on forensic identification. New data are generated using modern information analysis offers on search-pathogenic genes involved in biological infectious diseases, biologically hazardous, and biological warfare agents. Such strategies have substantially heuristic content and practical value for forensic analysis [1, 2].

Biological agents (bacteria, viruses, fungi, and parasites) threaten human health and life. Primary criteria for potential biological threat by causative agents are based on pathogenicity, virulence, pathogenic mechanisms, toxin production, and accessibility to Susceptible populations, and for consideration of biological weapon by provision of the Biological Weapons Convention by the Development, production, and stockpiling of customarily used biological agents and toxins, in the in large quantities and special place on their infectious properties. The above biological agents and toxins are considered for application in biological attacks against humankind. The relationship among

microbiology, biotechnology, and forensic science is direct. Recent terrible events of acts of bioterrorism against civilians provide also new instrumental developments for detection biological agents and requested much broader forensics area in these disciplines ^[3, 4, 5].

Chapter - 1

Introduction to Pathogenic Factors and Biological Threats

Pathogens are infectious agents that cause disease in hosts. Currently, the most common groups recognized are bacteria, viruses, fungi, and parasites. Infectious agents can be categorized by taxonomy, pathology, routes of transmission, diseases produced, and mechanisms of cell injury. Initially, these harmful agents were classified simply by their ability to infect humans or animals, but today, pathogenic organisms are assigned risk groups indicated by a hazard symbol and categorized for use as biological weapons or as potential bioterrorism agents by the CDC or the FBI. Biological weapons have been used throughout history, with major bioterrorism events recorded. The links among clinical microbiology, biotechnology, and forensic science are closely related to pathogenic biology. Understanding how pathogens cause disease is essential for detecting and controlling infectious diseases in human health. developments in biotechnology and data science, especially in clinical microbiology and protection against bioterrorism, allow a wide variety of forensic applications. These areas are becoming increasingly important in forensic investigations related to bioterrorism and biological warfare.

Biological agents are frequently used in warfare or terrorist attacks, and with current advances in biotechnology, efforts to pursue biological weapons continue among countries. In contrast to HIV or smallpox, which, while highly pathogenic, do not possess a relatively short incubation period and environmental stability for aerosol transmission, the ability to rapidly infect a healthy population through a single aerosol of a few bacteria or viruses poses a serious threat. Biological agents used for warfare and biological terrorism can be divided into three categories by the Centers for Disease Control and Prevention (CDC) as well as by the Federal Bureau of Investigation (FBI). Knowledge of the biological agents listed in these categories, their routes of exposure, and mechanisms of pathogenicity is important for recognizing evidence in police investigations of potential bioterrorism-related events [6, 7, 8, 9, 10].

Definition and classification of pathogens (bacteria, viruses, fungi, parasites)

In the natural environment, pathogens vary greatly in morbidity, mortality, and virulence and can cause numerous diseases in humans, animals, and plants. Pathogenic factors can be classified by various criteria, including morphological, ecological, political, and health risk. The priority classification is provided by the Center for Disease Control and Prevention in the United States and the World Health Organization. Based on the degree of danger to humans, pathogens are divided into four groups, according to the degree of pathogenicity:

- 1) Extremely dangerous pathogens that can cause a deadly infection in humans.
- 2) Dangerous pathogens that can cause severe diseases but are not fatal.
- 3) Pathogens whose pathogenicity is normally reduced under the ecological conditions of a population.
- 4) Non-pathogenic microbes.

All significant pathogenic factors of infectious diseases known to mankind have a lengthy natural evolutionary history.

They are considered either as endemics-pathogens occurring denotatively within a specific natufact or as worldwide epidemic pathogens-pathogens exhibited within a demotic population naturally obtained by energetic, cultural and civilized interactions. Modern explosive incendiaries and aunt-airfire-andchemical-room chambers can change adirecting suspensus splashing, pelting, scalding and choking into biowar fare smuggling and bioterror splits. The non-ecological detonation of these incendiaries has led to a four-country, four-stage epidemichistory. Extensive clinical microbiology, slammed biotechnology and forensic science cooperation will aid in improving schematic addressees [11, 12, 13, 14, 15].

Historical perspective on infectious agents and biothreats

Pathogenic factors and biological agents that threaten human health and life have accompanied humankind throughout its history. As such threats became the object of research, the interdisciplinary field of clinical microbiology was established. It encompasses various studies aimed at confirming the etiology of infectious diseases and identifying the classic biological agents of war and terrorism. In addition to the biological agents introduced by the U.S. Centers for Disease Control and Prevention, other fungi and viruses can be both pathogens for healthy persons and agents of bioweapons and bioterrorism. Outbreaks of diseases caused by these agents and their deliberate use reveal the interconnections among clinical microbiology, biotechnology and forensic science. Knowledge about infectious essential for diagnostics, vaccine factors is development, protein and metabolite detection, and forensic source and potential risk determination.

The depth of these relationships can be illustrated by discussion of the spores of Bacillus anthracis, the etiological agents of anthrax. The first clear descriptions were based on

clinical microbiology, while the causal connections with such artificial-induced events were discovered within 90 years of the identification of the pathogen. Subsequent studies revealed additional aspects of the utilization of this disease by the CDC categories considered the classic biological agents of war and terrorism. The potential importance of other bacteria, viruses and health has also for human been highlighted. Reconstructions of the natural causes of death, outbreaks of these diseases and their artificial use emphasize the importance of the classical microbiological approaches for forensic science [16, 17, 18, 19]

Relationship between clinical microbiology, biotechnology, and forensic science

The relations that tie clinical microbiology, forensics and tightly interlaced biotechnology are and their complementarity, particularly for the analysis of pathogenic organisms, makes it difficult to imagine their studies separated one from the other. The processes of biological destruction or of sexually-transmitted diseases inflict progressively more and more damage to animal life and in some cases to human life, but they are essential in the maintenance of the ecological balance of nature. In clinical and forensic microbiology, however, medicine, guiding common sense, is interested only in solving problems of analgesia and health and, where this cannot be achieved, in helping the dying person to take a last farewell, while the investigation of biological agents pathogenic for man, animals and plants is pursued mainly to prevent their use as biological weapons. Apart from these divergences of interest aimed at either the prevention or the active participation in the biological destruction of life, a special closeness exists between clinical microbiology, forensic microbiology and microbiology applied to biotechnology.

With the development of bacteriology, mycology and virology, advanced techniques, such as observation of microbes using the electron microscope, the genetic modification of microbes or parts of them to produce a substance in foreign soil, nucleic acid amplification, cloning extraneous DNA into a plasmid which replicates in the cells of other organisms, protein mapping at the nanometre level and real-time PCR, have become indispensable tools for the growth of all three disciplines. It is the envisaged and submitted application of those methods of forensic detective work with which everyone is familiar, in the area of activity of pathogenic, bacteriological, virological, fungal or parasitological agents, that constitutes a part of this contribution [20, 21, 22]

Chapter - 2

Overview of Biological Agents in Forensic Contexts

The CDC categorizes biological warfare and terrorism agents into risk groups (A, B, C) based on exposure routes, pathogenicity, availability, and weaponization. A overview highlights those with dedicated forensic research and real-world incidents, such as Bacillus anthracis during the 2001 anthrax events. Microbial agents like bacteria are the primary forensic focus, yet viruses (e.g., smallpox, Ebola) and toxins are equally relevant. Bacterial agents usually cause disease through infectious processes; for viral agents, symptoms following exposure and statistical associations can indicate causality. Bacterial toxins (e.g., botulinum, ricin, aflatoxins), cytolysins, and mitogens exert effects even at low doses, and the absence of environmental isolates does not preclude use.

Source attribution is complicated by the lack of epidemiological data, difficulty in isolating Group B agent toxins, limited availability and controlled use of Group A agents, and sporadic Group C infections. A case study of an 1895 plague outbreak in London underscores the advantages of having historical context, an absence of environmental isolates, and supportive epidemiological data, while the 2001 anthrax events demonstrate the value of evidence from previous research. Nevertheless, these resources alone may fail to identify the source, potential source, or motive; corroboration from forensic bacteriology strengthens, but does not guarantee, success [23, 24, 25].

Categories of biological warfare agents and bioterrorism agents (CDC classification)

Although biological agents may be present in the atmosphere, soil, or water as a result of microbial activity, their use in military, terrorist, or crime actions is a serious danger for people. Biological agents are usually divided into three categories according to the threat they represent for the population and public health. For the first time, the Center for Disease Control and Prevention (CDC) proposed the classification of biological agents responsible for acts of biowarfare and bioterrorism in Such classification includes 1999. three groups microorganisms based on their impact on human health and on the risk of being artificially spread. The biological agents causing the least danger belong to Category C: those likely are already available and relatively cheap and easy to use, as demonstrated by the successful use of anthrax spores during the act of bioterrorism that took place in the USA in 2001. Group B includes harmful microorganisms that require regulation to ensure safety. At the highest level of risk, Group A includes severe diseases transmitted by pathogens considered disproportionately dangerous for public health. Diseases caused by biological warfare and bioterrorism agents differ from other infectious diseases in terms of dissemination.

Direct contact with biological agents can occur by inhalation, ingestion, or through skin wounds. The presence of infectious inoculum in these exposure routes is sufficient to cause the onset of the disease. Another serious aspect of diseases caused by biological warfare agents is the speed of onset that can lead to people dying before being diagnosed or during the incubation period. The capability to cause secondary cases depends on the degree of transmission; the potential for human-to-human transmission is indeed an important factor influencing the classification of biological agents. The metabolism and diffusion

of the agents in nature determine the infection mechanism. Infection through the respiratory tract or through the intestinal system (for example, for Bacillus anthracis) can induce the release of a toxin that causes death without the dissemination of the pathogen in the tissues. The virulence factors responsible for the mechanism of pathogenic action differ from one microorganism to another [26, 27, 28].

Routes of exposure and mechanisms of pathogenicity

Pathogenic organisms can gain entry into the human body by different routes. The skin is the primary barrier against invasion; however, pathogens can gain entry through abrasions, lacerations, bites, or via penetration by natural openings, such as hair follicles and sweat or sebaceous glands. The mucous membranes lining the conjunctiva, respiratory gastrointestinal tract, and urogenital tract may also serve as portals of entry. The entry routes of some key pathogens are outlined. Biotic agents may be further categorized on the basis of their principal sources of transmission: human sources, animal or arthropod reservoirs, environmental reservoirs (soil, water), and food vectors. Successful pathogens must possess mechanisms of dissemination from the host or from one host individual to another among those sharing a similar life cycle. Pathogens are often classified according to these routes of exit: secreted products in body secretions such as saliva, urine, or feces; aerosols obtained from coughing and sneezing, leading to airborne transmission; or bodily secretions available via vomit, pus, blood, or tissue exudates.

The agents of infectious diseases contain a variety of physical or biochemical components enabling them to overcome host defense barriers and cause damage to human tissues. These factors are best thought of as a supramolecular assemblage or a collection of molecules providing the organism with virulence; pathogenicity cannot be attributed to isolated components. Nonetheless, current aspects of infectious disease consideration typically cite six features, here termed "biological mechanisms of pathogenicity," applicable to many pathogenic organisms. Further mechanistic categories are also used for those diseases in which toxins play a primary role, such as diphtheria or tetanus. These categories are: adherence; invasion; cellular and tissue destruction: immune evasion: dissemination: production secretion. Understanding of biological and mechanisms of pathogenicity has important implications for the forensic identification of the source, route of introduction, and intent of biological agents [29, 30, 31, 32].

Case studies of major biological incidents (e.g., anthrax 2001)

Analysis of historical biological events reveals that although classical microbiological and serological techniques continue to play a major role in pathogen identification, their major-sometimes sole-role is restricted to only a few cases; for the majority, they represent just the starting point of an increasingly complex molecular investigation. Owing to the fact that a successful forensic examination of a biological agent requires the integration of all available techniques, presenting such cases with the established analytical approach in mind highlights interdisciplinary connections and emphasizes the value of data synthesis.

Following 9/11, a letter containing anthrax spores was sent to the office of the news network NBC, and two others were sent to the offices of Senator Tom Daschle and Senator Patrick Leahy. Subsequently, spores were dispersed in the Capitol Hill postal facility, and 22 cases of inhalational anthrax were diagnosed. Of these, five patients died, along with one who developed cutaneous anthrax after exposure. The letters contained sufficient spores to cause several thousand cases of inhalational anthrax,

with the letter to Senator Daschle probably being the most sophisticated bioterrorism preparation ever. Although S. pneumonia and M. autumnale were detected in the letters, they were unrelated to the cases; further analyses of the source of the attack were based on the presence of several biological markers and no other letters were found outside the United States.

Part of the investigation was assigned to the FBI, which used multidisciplinary analyses to evaluate all the evidence, ultimately identifying the suspected perpetrator, Bruce Edwards Edwards Ivins. Classically, the determination of criminal liability requires the establishment of a causal link between the act and the offense; however, this principle is difficult to apply to biological forensics, where the source of exposure cannot necessarily be linked to a specific agent. In light of this difficulty, investigations tend to focus on proving the absence of exposure rather than demonstrating actual exposure, drawing on the major pathogenic mechanisms that characterize the biological agents in question. [33, 34, 35]

Chapter - 3

Host-Pathogen Interactions and Mechanisms of Disease

Interactions between hosts and infecting pathogens are crucial for disease induction. For any pathogen, successful establishment of infection relies on both the ability to penetrate and inhabit a host, as well as the avoidance and/or overcoming of the host defence mechanisms. Organisms have evolved mechanisms that allow them to gain entry into the host and subvert the immune response. The potential for disease caused by an infectious agent is generally recognized to correlate with the toxin or virulence factors it produces. Virulence factors of special interest from forensic perspectives include those that help to characterize the source of an infection and those that would signal its deliberate introduction.

Detection of virulence factors could provide important evidence for the forensic identification of the source and intent of biothreats. This includes determining whether the source was natural or laboratory-based, such as isotype profiling of Bacillus anthracis, Legionella spp. or Burkholderia spp. metabolites or Forensic analysis of forensically relevant species using metabolomics, proteomics, such as distinguishing between genetically engineered strains and virulence-associated phylogenetic groups in Rickettsia using phylogenetic profiling of snp, vntr, or weight-of-evidence approaches. Relevant aspects of host–pathogen interactions and mechanisms of disease are outlined here to highlight their role in the detection of virulence

factors and their potential use in the forensic verification of bioterrorism and biological warfare incidents [36, 37, 38].

Molecular mechanisms of infection and immune evasion

Pathogen infection relies on an orchestrated interplay between pathogen and host that distinguishes successful pathogens from their non-pathogenic relatives. Virulence factors are the numerous pathogen-derived products that enable an organism to persist and reproduce within a host. Host Recognition of Pathogen associated molecular patterns (PAMPs) by the host's innate immune system is essential for identifying danger and initiating an appropriate immune response. Pathogens have evolved multiple mechanisms to escape such detection or dampen detected danger to their advantage. Pathogen evasion can occur at various stages: blocking recognition and detection, repressing downstream signalling once infection has been established or directly inhibiting the immune response of susceptible cells.

Knowledge of the mechanisms by which pathogens establish and maintain infections, of their various virulence factors, and of determinants of host susceptibility is increasingly being used to assist forensic science, facilitating source identification, even attribution of specific acts of bioterrorism. In theory, it is possible to detect a pathogen and infer not only that a disease was created, but how it was perpetrated. Forensic identification of a biological threat hinges upon the persuasive demonstration of such elements of intent. Pathogen type, isolate and concentration must all be considered. The best evidence of Biothreat motive is associated with uncommon pathogens, especially enhanced strains, detected far outside of their natural ecological or epidemiological space.

Variants of viruses, fungi, protozoa and parasites cause disease through diverse mechanisms. Biomarkers of disease are accordingly complicated by the sheer number of potential pathophysiological pathways and processes that may be affected, and by the difficulty in isolating and characterising the agents themselves. Increased understanding of the mechanisms of potential pathogens and the pathways triggered in the host can provide a powerful means of disease detection, help interrogate some of the unique complexities and challenges of biological crime, and hence aid forensic science [39, 40, 37, 41].

Virulence factors and their detection

Virulence factors are microbial components that contribute to the pathogenicity of a microorganism. They help the pathogen establish an infection, disseminate in the host, damage host tissues, and evade detection and neutralization by the host immune system. Knowledge of the mechanisms through which a pathogen causes disease is crucial when formulating specific hypotheses related to the forensic identification of a biological agent in any incident. An understanding of these mechanisms assists in identifying the potential effects of the agent on the host and in addressing the question of how the information could distinguish among possible sources or formulate specific intent. This knowledge base is also invaluable for guiding research toward therapeutic and preventive measures that lessen the potential effects of pathogenic microorganisms on exposed victims. For instance, some agents of bioterrorism, such as ricin toxin, botulinum toxin, and AFB1, cause disease differently than conventional infectious agents. Consequently, these toxins must be detected by specific methods different from the conventional diagnostic patterns applied in other biological forensic studies.

Virulence factors expressed by pathogens are diverse, but many investigators employ an operationally defined classification scheme that identifies the following five categories: exotoxins and endotoxins, invasion and colonization factors, immune evasion and destruction factors, nutrients acquisition factors, and biofilm formation factors. Recognition of the key molecular mechanisms of the major bacterial, viral, and fungal pathogens of humans and animals provides necessary information for studying the modifications needed in biological forensics when considering bioweaponizing events compared with classic biological forensic cases [42, 43, 44].

Relevance to forensic identification of source and intent

Understanding pathogenic processes is essential. Virulence factors contribute to disease pathogenesis, with infection mechanisms often well characterized. However, immune evasion poses additional challenges. Such knowledge can support forensic identification of source, pathogen, or involved strain, useful when classical microbiological or molecular approaches are infeasible.

Microbially derived agents can enter the host through various modes, including via the respiratory, digestive, or cutaneous systems, as indicated by the CDC. Bacterial toxins, allergens, and mycotoxins produce non-infectious effects via the alimentary system. Group A streptococcal superantigens contribute to both syndromes. Pathogenicity generally requires hallmark traits, including adherence factors, host-cell invasiveness modulation, organ tropism, toxins, systemic spreading, immunodeficiency induction, and resistance to antimicrobial hurdles.

Bacterial agents possess an extensive arsenal of virulence tools enabling their successful spread after infection. Pathogenicity islands typically harbor several operons coding for related or co-regulated factors involved in distinct phases of the infectious cycle, such as adherence, colonization, tissue-damaging ability, and systemic spreading. These genetic features represent important targets in forensic pathogen identification and detection. Specific enzymatic activities, such as cytotoxicity, deoxyribonuclease, or serine protease activity, constitute useful

traits for source identification of certain agents. Given their crucial role in host–pathogen interactions and pathogenic mechanisms across the kingdom, toxins and superantigens have attracted considerable forensic interest [45, 46, 47, 48].

Part - II

Modern Medical Laboratory Techniques for Pathogen Detection

Chapter - 4

Classical Microbiological and Serological Methods

Culture-based identification remains a foundational technique, exploiting distinctive growth characteristics and biochemical activities. Absence of pathogens in controls establishes species-specific pathogenicity; however, non-viable pathogens evade culture (e.g. B. anthracis), while lesions may harbor multiple pathogens (e.g. plague, tularemia). Microscopy and staining reveal morphology, motility, Gram and Ziehl-Neelsen properties; morphology-based identification is rapid (e.g. Brucella, Mycobacterium tuberculosis complex) but not definitive. Antigen—antibody interactions support detection and identification of pathogens and species or strain-specific markers.

Methods must address low or non-viable pathogen concentrations, non-culturable or fastidious pathogens (e.g. Coxiella burnetii, Chlamydia, Burkholderia psuedomallei), evasion of culturing or serological detection (e.g. Yersinia pestis, Bacillus cereus, Francisella tularensis) and their increased virulence in mixed infections (e.g. mucus layer disruption). Molecular diagnostics enable detection of low-abundance pathogens, especially those hidden in biofilms, employing amplicon sequencing and metagenomics for culture-independent environmental samples. Nucleic acid hybridization-based identification offers culture-independent pathogen identification directly in infected tissue [49, 50, 51, 52].

Culture-based identification and biochemical assays

Classical microbiological approaches remain essential to the identification of pathogenic organisms. Distinctive biochemical properties distinguish many relevant animal, plant, and human pathogens. The simplest culture-selective methods use differential media to support the growth of specific genera and produce informative colony characteristics. Bacillus anthracis, Yersinia pestis, and Shigella species can be identified using a limited number of tests, but most pathogenic bacteria require more extensive evaluation. Molecular tests increasingly augment classical techniques but do not replace them entirely; culture-based methods remain integral to pathogen detection and diagnosis in forensic contexts.

Microbiological examination alone is insufficient for forensic identification of all potential agents of biological warfare or bioterrorism (bioweapons). Pathogen detection can be achieved with high specificity and sensitivity using classical microbiological methods, and most techniques validated, inexpensive, and suitable for both clinical and environmental samples. Detection and identification of Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, Yersinia pestis, Shigella dysenteriae, and viral hemorrhagic fever (VHF) pathogens demonstrate the strengths and limitations of conventional culture and serological procedures in forensic investigations. [37, 53, 54, 55]

Microscopy, staining, and antigen-antibody techniques

Classic microbiological techniques, microscopy, and antigen-antibody reactions remain critical for the reliable identification of pathogens, especially when no other marker is available.

Pathogenic bacteria are ubiquitous, often encountered as contaminants because of the high sensitivity and low infectious doses required. Despite the relatively low volume of biological material typically involved, complete microbiological investigations are almost invariably mandated, and field testing is impractical. Confirmatory culture-based techniques usually have high specificity and reliability, particularly when applied during the pre-symptomatic phase of infection, yet they have limited sensitivity and can require several days or weeks. Detection of clinically relevant pathogens other than bacteria is frequently achieved by culture-dependent methods directed towards limited target classes (e.g. fungi, parasites).

microscopic examination, either without Direct subsequent to culturing, is a routinely applied technique for many pathogens, more widely used with fungi and parasites. Biochemical reaction products of single bacterial delineating broad physiological characteristics, are routinely utilized as rapid tests. Depending on the particular reaction used, tests can provide presumptive identification of a family-group or even wider. Staining techniques can further enhance direct of microscopic examination environmental samples. Characterization of pathogen-derived antigens is often combined with microscopy; appropriate reagents are commercially available for many clinically important bacteria and fungi. Such antigen-antibody techniques can also be utilized in a multiplex format [56, 57, 58]

Strengths, limitations, and evidentiary considerations

Clinical microbiological and serological methods remain the mainstays of pathogen identification worldwide and can provide convincing evidence in court. The development of diagnostic kits has improved the speed and convenience of detecting certain pathogens, including the agents of plague, botulism, tularemia, Q fever, brucellosis, alphaviruses, and filoviruses. Nevertheless, more complex cases highlight the limitations of classical

methods. Some pathogens pose great risks to biosafety and biosecurity when attempting to isolate and identify them in a laboratory and require highly skilled personnel to undertake the procedures. Moreover, even when the cause of an infection is identified, little if any information can be gained about the source of the outbreak or the intent of an attacker.

Culture-independent molecular techniques are overcoming these obstacles, especially when pathogens are present in low numbers. Nucleic acid amplification techniques (NAATs) detect minute quantities of genetic material, revealing the presence of a multiplicity of targets simultaneously. They offer solutions in cases where the organism can no longer be cultivated, the biomass is minuscule, or the transmission route is atypical. The deployment of next-generation sequencing (NGS) can further transform microbiology. Pathogenomics is being applied to the differentiation. detection. strain and reconstruction epidemiological histories. Metagenomic studies allow for direct screening of complex matrices without prior enrichment. Nevertheless, the high cost of sequencing has so far restricted its application to the analysis of outbreaks rather than individual cases [59, 60, 61]

Chapter - 5

Molecular Diagnostics and Nucleic Acid Amplification Techniques

Nucleic acid-based diagnostics are some of the most sensitive and widely applied techniques in clinical microbiology. RT-PCR, real-time PCR, LAMP and sequencing remain at the forefront of molecular diagnosis despite advances in third-gen sequencing technologies. Detection of virulence and resistance markers-often multiplexed-extends the use of 5'-nested, real-time, qPCR and LAMP techniques. Reliable and reproducible probe- and primer-based assays are the basis of laboratory accreditation, forensically acceptable evidence and implementation in uncontrolled environments.

Forensic reliability pivots on validation. Requisite specificity can be assured only by comprehensive probe/primer design. Sexual specificity is guaranteed for the target species when specimen construction involves universal eukaryotic primers acting in a first amplification step followed by sex-specific primers operating in a second, nested amplification step. Analysis of pooled data sets confirms that Taq polymerase remains the enzyme of choice for all but the simplest constructions and justifies the exclusive use of commercially manufactured primers. When examined by the European Union FP7 Project RAMON under a standard operating procedure based on the Environ-CEN technical specification, sexual patterning at nuclear ribosomal loci using 5'-nested PCR matched a 100% detection threshold and a disjunction limit of one taling in 10-6 [62, 63, 64, 65].

PCR, qPCR, digital PCR, LAMP, and sequencing-based assays

Classic methods of nucleic acid detection relied on hybridization-based probes and were rapidly extended using polymerase chain reaction (PCR) amplification. Evolving PCR technologies, such as multiplexing, quantitative PCR (qPCR), and reverse-transcription PCR (RT-PCR) have been introduced. media-use PCR variations based on endpoint quantification and/or high-throughput platforms-digital PCR (dPCR) and next-generation sequencing (NGS)-add further capabilities. Direct assay of pathogens from non-enriched samples, without the need for known hybridization targets, was enabled by implementation of broad-range amplification. The recent introduction of forensic LAMP assays and their key quality-assurance steps provide exciting new developments.

All methods are subject to pre-, mid-, and postanalytical conditions that require careful consideration to support adoption in routine diagnostic investigations, while maintaining their recognized advantages over culture-based systems. Aspects of PCR and its applications in forensic pathogen investigations are reviewed, with emphasis on those areas that were pivotal in establishing the outcome of the 2001 anthrax events in the USA. Toxin-producing bacteria often pose a different challenge due to the practical impossibility of PCR-based detection of the organism and its toxin gene in the same sample; the first area considered is therefore the detection of virulence and/or antimicrobial resistance genes encoded on plasmids or phages [66, 67, 68]

Detection of genetic markers of virulence and resistance

Detection of virulence and resistance markers is of growing forensic significance because strains used in attacks may differ substantially from environmental or clinical isolates with respect to genes associated with virulence and drug resistance. Enterotoxigenic Escherichia coli produces heat-labile and/or heat-stable enterotoxins; genomic detection of each toxin type or their genetic determinants in environmental samples from locations in Thailand has provided valuable public health information. Azole resistance in Candida albicans can be conferred by gain-of-function mutations in the transcription factor TAC1. A qPCR assay to assess TAC1 status in azole-treated clinical samples was sufficiently informative to justify use as a co-assay with standard antifungal susceptibility testing. Brucella abortus biovar 2 strains isolated after a disease outbreak in a herd of cattle showed distinctive echB_str and bvrA931 unique to strain 2308 in epizootiological and epidemiological investigations. For Legionella munichensis a multiplex PCR assay for simultaneous detection of the virulence genes icmG, 16S rRNA, magA, and lobE has been developed.

Major virulence factors in Vibrio cholerae are the cholera toxin encoded by the ctxAB genes on the CTXφ bacteriophage and the toxin-coregulated pilus encoded by the TCP pathogenicity island. V. cholerae O1, O139, and non-O1/non-O139 strains are identified in environmental samples from Thailand using multiplex PCR with specific primers for ctxA, tcpA, and the Vc-1 hemolysin gene.

Detection of gentamicin-resistance genes aac(3)-II and aph(3)-IIc has been undertaken in clinical and environmental Campylobacter spp. isolates. Pseudomonas aeruginosa strains used in biowarfare were found to harbor the exoS and exoU virulence genes; these strains were also studied for antibiotic resistance, with the presence of the OprD channel-forming protein and of the metallo-β-lactamase reported as possible markers for resistance to imipenem. Detection of the virulence-associated plasmid gene (pJB) of Edwardsiella tarda in fish has important public health implications. An infectious clone of a virulence plasmid from Yersinia pestis has been established and

makes it possible to study the genetics of virulence more precisely. Detection of the six gene from Shiga toxin-producing E. coli in bovine waste indicates sites for enhanced monitoring. [69, 70, 71]

Validation, sensitivity, and forensic reliability

Healthy human organisms are usually colonised by numerous microbiological communities, mainly consisting of commensal microorganisms and appearing as a microbiota which represents specific habitat for each individual. However, in a compromised physiological state, pathogenic microorganisms can become opportunistic disease-causing agents, inducing infections or diseases depending on their virulence, establishing infections or diseases and evading the host's immune response. The identification of bacterial pathogens is essential for confirming diagnosis and determining appropriate the therapeutic regiment. Classical-based detection methods are time-consuming and cannot detect the majority of harmful bacteria in a rapid manner. Use of molecular techniques can provide useful and rapid response data for clinical microbiology. Virulence indicators present in pathogens can also be targeted for detection and identification.

Molecular detection methods based on the principle of nucleic acid hybridization or amplification in a polymerase chain reaction (PCR) or its variants have been successfully developed for the rapid detection of several human bacterial pathogens. Nucleic acid amplification technique (NAAT) is widely used because of its specificity and sensitivity. All these methods are simple, rapid, sensitive, specific and can detect pathogens even from patients under antibiotic treatment. Pyrosequencing, pyrocyst PCR restriction fragment length polymorphism (PCR-RFLP), multiplex PCR, PCR-restriction fragment length polymorphism (RFLP) analysis, internal transcribed spacers

(ITS1 and ITS2) and DNA sequencing have also been used to differentiate pathogenic and non-pathogenic species of fungi. Further, multiplex PCR has been successfully applied not only to pure cultures of pathogenic fungus but also to detect and classify species from other biological samples (human blood, soil) and environment-related cultural sources – insects, animals (birds and mammals) and food. Other NAAT related methods such as real-time PCR and reverse transcription real-time PCR for quantitative detection of pathogenic fungus are employed for clinical diagnosis [72, 51, 73].

Chapter - 6

Genomic and Metagenomic Approaches

Whole-genome sequencing (WGS) enables pathogen strain typing with unparalleled precision, allowing for the characterization of genetic markers linked to antimicrobial resistance and virulence. Metagenomic shotgun sequencing is applied to complex environmental samples, and comparative genomics can target lineages of specific interest. Bioinformatics pipelines facilitate accurate identification of pathogen taxon and species; these resources are integral for tracking epidemic and pandemic outbreaks and have also been applied for forensic attribution of pathogens.

In recent years, technological advances in sequencing have propelled whole-genome and metagenomic sequencing toward clinical and forensic application. Low-cost sequencing, advances in protocol efficiency and read length, improved turnaround times with peripheral sequencing technologies such as oxford nanopore technology, and extensive public data resources such as NCBI biosample and GISAID are helping to enable rapid near real-time access to genome data at the point of clinical need. Genomics and paired-end metagenomics have been validated in multiple clinical applications. [74, 75, 76, 77]

Whole genome sequencing (WGS), metagenomic sequencing, and comparative genomics

Whole Genome Sequencing (WGS) of potential biological threat agents is rapidly becoming incorporated into standard clinical microbiology practice for specific identification and epidemiological investigation. The speed with which WGS data can provide information about a pathogen's biological capabilities has also stimulated interest in applying WGS to metagenomic studies of clinical and environmental samples, including biowarfare and bioterrorism-related investigations. These new applications of sequencing technology usually depend on specialist facilities and hence are not available for routine diagnostic use. Moreover, the exploitation of WGS data for pathogen discovery and epidemiology is dependent on the existence of a robust bioinformatics pipeline, which is also outside the competence of a normal clinical laboratory. Nevertheless, the availability of WGS at reference laboratories for urgent investigations has a direct impact on the testing strategies employed in front-line microbiology laboratories.

The unravelling of microbial genomic sequences is revealing a wealth of information about the genetic bases of virulence. Comparative genomics is demonstrating that virulence is often due to the acquisition of a small number of specific genes ('accessory genome') by an organism with a large core genome, and also why this phenomenon seems to apply to some organisms and not others. The identification of virulence associated nucleotide polymorphisms (VNTPs), for example single nucleotide polymorphisms (SNPs) in certain highly conserved genes, holds promise as a more stable alternative to multilocus variable-number tandem-repeat analysis (MLVA) for epidemiological typing [78, 79, 80].

Bioinformatics pipelines for pathogen identification.

Accurate and reliable pathogen detection, typing, and epidemiological investigation are crucial for both clinical microbiology and forensic applications. Identification of a suspected agent is often guided by clinical and environmental information, followed by analysis using a biologically tailored and optimised laboratory pipeline. However, there may be insufficient evidence to narrow the list of potential pathogens and provide experimental targets. In such cases, molecular metagenomic methods using next-generation sequencing offer a powerful alternative for screening of environmental or clinical specimens without the need for isolation and cultivation. Similar approaches can also facilitate forensic case resolution, particularly when there is little background knowledge of the possible target organism.

Bioinformatics pipelines are fundamental for enabling pathogen detection from metagenomic data. A variety of methods have been developed, ranging from identification of single reads to reconstruction of whole-genome sequences. Screening can be performed at multiple taxonomic levels to produce information for strain-level real-time monitoring, outbreak tracking, and longer-term attribution. Such approaches yield insights into the most closely related strains and genes, geographical distribution of related pathogens, and laboratory sources. The information obtained represents an arsenal for tracing suspected biological agents and determining the origin and purpose of a biological event [81, 82, 83, 84].

Application in outbreak tracing and forensic attribution

In a forensic context, bioinformatics are primarily used to detect or characterize pathogens or their genomic signatures, to compare genomic complementary to the source or origin of existing biological aggression using SNPs or Variable Numbers of Tandem Repeats (VNTRs) as indicators, or generate a complete phylogenetic tree to indicate the geographic origin of the pathogen to prevent future accidents and defend against Directional Determine Destructive Biologics Agents towards a specific country or ethnicity. In addition, in outbreak tracing,

bioinformatics is used to provide additional genotypic data independent of nose assemblies for whole-genome sequencing surveillance or metagenomics survey data detection advice or control in a timely manner.

Recent outbreaks involving plague, salmonella and cholera illuminate the application of metagenomics in a forensic context. Integrating a balanced selection of whole-genome sequencing with other sources of information enables rapid connection of metagenomic data to epidemiological evidence in an outbreak investigation. Detection of metagenomics sequences that fit modeling or PhyBank profiles may enable early situations to be identified for discussing localized control measures. Application of whole-genome sequencing-based data analysis to case evidence has revealed previously unknown surge reservoirs of potential, thus justifying using whole-genome disease sequencing approaches during attach-based surveillance [85, 86, 87, 15]

Chapter - 7

Proteomics, Metabolomics, and Immunoassays

Profiling of proteins and metabolites associated with infectious diseases can enrich existing clinical diagnostic tools. Rapid and reliable analysis of virulence factors and toxic compounds using antibody-based or mass spectrometry immunoassays can yield tremendous benefits in clinical practice and forensic investigation.

Mass spectrometry-based metabolomic analysis detects known and unknown metabolites regulating the host-pathogen relationship during exposure to pathogenic bacteria. In particular, ≥ 90% of strains of Burkholderia pseudomallei, the causative agent of melioidosis, can be confirmed by measuring the relative levels of 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid in infected human serum samples. For the highly virulent bacterium Yersinia pestis that causes plague, hierarchical cluster and classification analyses utilizing 24 identified metabolites and > 500 biological features from six biological sources of Yersinia pestis can differentiate virulent strains from avirulent and environmental strains.

Protein profiling with label-free LC-MS/MS coupled with bioinformatic analysis enables characterization of pathogenic bacteria. Matrix-assisted laser desorption ionization (MALDI)—TOF MS is a routine identification tool for common human-associated bacteria. MALDI-TOF MS based on LC fractionation and spectrometry enhances identification coverage. Furthermore, LC-MS/MS combined with a specific enzyme allows

simultaneous determination of ATK8b, ATK8b peptide, and ceramide in clams. These multiplexed immunoassays significantly extend the ontological preservative time of specific tissues, permitting indirect detection of temperature-sensitive pathogens in seafood and fishery products [88, 89, 90, 91].

Protein and metabolite profiling for pathogen identification

Classic microbiological identification services isolate and characterize pathogens based on culture, biochemical tests, and serology. The field has now expanded to include proteomics and metabolomic analysis, which enable microbial identification by matching cellular protein profiles against databases. Matrixlaser desorption/ionization time-of-flight spectrometry has transformed identification workflows, speeding species-level identification beyond traditional biochemical kits. Species are commonly resolved in <1 h and identification of rare or difficult-to-culture organisms is increasingly common, although identification of environmental and opportunistic fungi remains a challenge. In addition to protein profiles, non-volatile metabolites released into culture supernatants can now be exploited for identification, although matching to databases remains a challenge.

Culture supernatants and cellular membranes can be further characterized using liquid chromatography tandem mass spectrometry, enabling a wide range of metabolites and natural products to be detected with high sensitivity and new media formulations to be developed. Within identification, the focus is shifting from AmpC and ESBL detection to the rapid and unequivocal detection of carbapenemase activity. Pigs are an important reservoir of enterotoxigenic Escherichia coli, but few multiplex assays are yet available for the detection of virulence genes associated with either production of porcine enterotoxin or adherence factors. Overall, microbiological profiling of

protein/metabolite expression patterns is now firmly established for routine laboratory use. [92, 93, 94, 95]

Mass spectrometry (MALDI-TOF, LC-MS/MS)

Mass spectrometry (MS) is among the most sensitive and versatile analytical platforms, offering detection limits down to parts per million or even parts per trillion. The principle involves converting molecules of interest (the analytes) into gas-phase ions, which are accelerated, fragmented, detected, and classified based on their mass-to-charge ratios.

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is an especially powerful technology for identifying proteins and other biomolecules such as lipids and metabolites. A small volume of sample mixed with a suitable matrix compound is spotted onto a target plate and dried. A pulsed laser beam vaporises a small region of the prepared sample and causes the embedded analytes to desorb into the gas-phase as positively charged ions. An electric field accelerates the ions into a time-of-flight tube. The bigger the ions, the longer they take to reach the detector, which generates a spectrum of intensity against ion mass. By comparing the ion mass fingerprints with those stored in a reference database, the identities of the analysed species are assigned with high probability. MALDI-TOF MS can identify single proteins with nanogram-picogram quantities, and recent advances are allowing the analysis of complex mixtures such as whole cell lysates without prior chromatography of the peptides. Importantly, the same platform can be adapted to generate microbial isolate taxonomic keys based on their metabolic profile rather than sequence data.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) involves offline separation of small-molecule metabolites or proteins in a complex mixture by reverse-phase

chromatography, after which elution is coupled on-line to a mass spectrometer. Tandem mass spectrometry refers to the mass selection of a precursor ion for fragmentation (collision-induced dissociation) in the gas phase, followed by a second mass measurement of the product ions, which yields structural and (post-translational) modification information. Properly configured LC-MS/MS is highly sensitive, is well-suited for flood or soil sample analysis, and can employ multiple reaction monitoring for selective and sensitive target detection [96, 97, 98, 99].

Multiplex immunoassays for toxin and antigen detection

Toxic microbial metabolites or their structural components released into the host organism during pathogenesis are key factors that enable fast diagnosis to support timely treatment and improved health outcomes. Specific detection of major toxins such as botulinum, ricin, and aflatoxins of Aspergillus and Fusarium species is crucial in both clinical and forensic settings. In addition, relevant immunoassays can detect insect toxins and trace amounts of other toxic agents implicated in bioterrorism. Several distinct yet closely related species of Bacillus and Clostridium produce various botulinum toxin (BoNT) serotypes that target cholinergic signalling. They represent the deadliest known poisons, capable of inducing paralysis in animals and humans. Forensic botulinum toxin tests are needed for potentially contaminated food or for environmental contamination, although dependable methods for confirming toxin presence in a foodborne outbreak are still lacking. An analysis framework for determining BoNT is anticipated using immunoaffinity preconcentration, electrochemical detection, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

Considerable research has focused on the detection of ricin toxins, which are produced from preformed lectins and secreted during active substrate hydrolysis. Ricin detection is essential for

dealing with ricin-contaminated samples from the environment, sources. Reliable procedures food air. based immunochemical testing have been developed for processing environmental samples such as urban Na-Ouinone air. compounds that are continuously produced by pathogenic fungi have been implicated in several forms of human and animal toxicity. Their accumulation in food constitutes a serious public health risk; thus detection of Aflatoxin B1, one of the most potent toxic metabolites, has been the focus of research. Multianalyte and multiplex detection by rapid and reliable methods has become a hot topic in a variety of fields. [100, 101, 102, 37]

Chapter - 8

Advanced Biotechnological Tools and Biosensors

Recent years have witnessed explosive developments in a variety of advanced biotechnological tools, including CRISPR-based methods for nucleic acid detection, nanotechnology, microfluidics, and lab-on-a-chip devices. These techniques offer the prospect of accurate detection of pathogens and chemical agents outside the laboratory, making them useful not only for conventional biological surveillance, but also for forensic contexts, especially when combined with AI.

Research in pathogen and biotoxin detection has historically focused on early recognition of potential public health threats. Boxed consensus lists published by the WHO and the CDC categorize agents that pose the greatest risk to human populations, either because they occur naturally - especially in tropical and subtropical climates - or because they are credible options for biological warfare or bioterrorism. These biological agents can thus become the focus of biosafety and biosecurity surveillance operations, with individual species in turn being subject to academic study to increase knowledge of their detection and identification by classical techniques and modern DNA-based technologies. In effect, it should be possible to deploy resources optimally to detect such pathogens and toxins that pose the largest risk, whilst ensuring that less risky pathogens can still be detected using other techniques.

The adaptation of advanced biotechnological methods - especially CRISPR-enabled molecular diagnostics, nanotechnology, microfluidics, and lab-on-a-chip systems - to

the field of pathogen and chemical agent detection, coupled with the development of portable solutions, is an exciting and promising trend. Such methods have been in development for some time and their application to sample testing in forensic settings would therefore require only small-scale adaptations. Specific methodologies would need to be refined to suit the nature of forensic evidence and samples collected outside the confines of a laboratory environment. [103, 104, 61, 105]

CRISPR-based diagnostics (e.g., SHERLOCK, DETECTR)

Recent advances in synthetic biology have enabled the rapid, accurate, and low-cost detection of nucleic acid sequences associated with a wide variety of pathogens. Forensic scientists may find these CRISPR-based biosensing platforms useful in some applications, but laboratory evaluation is lacking so far. When coupled to polymerase amplification (as in SHERLOCK and DETECTR), however, any nucleic acid-targeting assay is extremely sensitive, although the requisite enzymes and equip-ment remain more expensive than for conventional techniques.

Molecular identification of pathogens relies on the detection of conserved nucleic acid sequences using degenerate probes or primers. CRISPR-based assays extend this idea by using a type VI or type V-A CRISPR complex for detection of an RNA or DNA target, respectively, thereby taking advantage of the default single-RNA-strand specificity of trans-cleavage. De-signing a CRISPR-based detection strategy involves a target-specific hybridization and a trans-cleavage recognition reaction. Targeted amplification of the sequence preceding the PAM of the recognition strand improves sensitivity for SHERLOCK and provides for branched amplification when applied in combination with LNAMP.

SHERLOCK assays have been designed to detect a variety of viruses (including Zika, Dengue, SARS-CoV-2), bacteria (including E. coli), and plasmodial ribosomal RNA, among others, and are sensitive down to single-copy levels. DE-TECTR-type assays detect DNA viruses (such as human Adeno-virus-5, target from Marek's disease virus, and Streptococcus pyogenes) with similar sensitivity, but either LAMP or hHDA cannot easily be combined with other PCR-type amplifications; LAMP-PCR CASS adopts a two-enzyme CASS to directly amplify the target sequence adjacent to the PAM site, obviating the need for branched amplification.

Endonuclease-assisted CRISPR-Cas detection systems (Ea-CRISPR) have also recently been published. The technology promises multiplex detection capability and the advantage of simultaneously detecting DNA and RNA viruses, including SARS-CoV-2. The labelled and sealed Cas13a-Cas12-gRNA libraries, combined with isothermal amplification and transferee, should detect low copies of SARS-CoV-2 virus and distinguish viruses from clinical samples [106].

Nanotechnology, microfluidics, and lab-on-a-chip systems

Nanotechnology, microfluidics, and lab-on-a-chip systems are rapidly emerging as important experimental platforms in a variety of applications, including those in forensic science. Within the area of forensic science, research on the use of nanotechnology, microfluidics, and lab-on-chip systems has been extensive and numerous applications have been described. Especially in regard to diagnostic tests for bacterial pathogens, laws of nature have beenapplied to the delicate design of nanostructured silicon and related materials. High surface-tovolume ratios and, moreover, quantum mechanical properties of nanostructures and nanostructured systems have been engineered by nature for biogenic aerosols producing portobello and button mushrooms.

Bio-inspired approaches at the micrometer size-range have led to detailed investigations of micro-chip based detection systems and fluid actuation. Capillary forces and surface chemistry have been employed for a diverse range of applications, including chiral separation, colorimetric analysis, electrochemical selective extraction, sensors, chromatography (GC) applications. Laboratory-on-chip systems that combine detection, quantification, and concurrent isolation of biological analytes are highly accurate and reliable platforms for clinical diagnostics. Recent advances in micro-electro-(MEMS) technology, mechanical systems miniaturization of bases in PCR amplifiers, have suggested major progress in applications to emergency situations and point-ofcare detection [107, 108, 109, 110].

Point-of-care and field-deployable systems for forensic use

Molecular diagnostics have dramatically progressed over the last two decades; nevertheless, many applications remain limited to centralized facilities with appropriate instruments, expertise, and supervision. Despite their obvious advantages, the use of portable PCR, ePCR, and RPA platforms is still in the early phase of development and evaluation. Detection systems that combine advanced label-free sensing technologies with microfluidics and nanotechnology represent a promising avenue. Lab-on-a-chip devices and other fully integrated platforms are under development for various pathogens or diseases and are also emerging in the field of forensics and biodefense.

The paper analyzes the state of the art of important advanced biotechnological tools with potential utility for forensic analysis and detection of pathogenic organisms. It highlights novel developments in CRISPR-based diagnostics, biosensors, microfluidics devices, and portable sequencers that could be deployed for forensic purposes in the future, particularly in

relation to the control and prevention of bioterrorism and biowarfare. The analysis presented should contribute to a better overall understanding and general evaluation of these advanced technologies [67, 111, 112, 113].

Part - III Forensic Detection and Analysis

Chapter - 9

Forensic Sampling, Chain of Custody, and Biosafety

Forensic specimen collection requires comprehensive planning and close cooperation among partner agencies. Containment can involve the redesignation of a building or room as a temporary area providing the appropriate facility level (BSL-2 or BSL-3). Personnel must be trained in handling the pathogen, and in decontamination and disposal methods. Detailed instructions facilitate the sampling of many different specimen types. Precise procedures for the safe collection, transport, storage, and analysis of suspected biological agents are listed in internationally published guidelines. A large number of specimens may require prioritization based on the strength of the evidence and the investigatory resources available. Biosafety considerations govern the transport of forensic samples as any pathogen may infect the carrier or contaminate the vehicle. Chain of custody must be maintained for evidence used in legal proceedings. During lack of forensic clearance, decontamination can employ a simple combination of heated bleach and sodium hydroxide.

Specimens are a critical source of forensic evidence in criminal and civil investigations. Pathogen identification can provide key information for attribution and prosecution of biocrimes. Reliable, validated, and standardized methods for the analysis of all types of submitted samples are essential to enable the valid interpretation of the results. Many authorities have

issued advice on sampling the various categories. Such material supplies recommendations on scene assessment, collection equipment, and sampling strategy. In addition, it describes suitable sample types for different kinds of biological threat agent and highlights points to prioritize when limited resources restrict the number of samples taken. [114, 37, 115]

Specimen collection from biological crime scenes

Specimens from biological sources are among the most complex and hazardous types of evidence that may be encountered by detectives or crime scene investigators (CSIs). Effective collection, preservation, documentation, and transport of these specimens to forensic laboratories are essential in establishing both the presence and possible source of microorganisms or their toxins. Procedures for collection of specimens are similar to those used for other types of evidence, but require additional training, resources, and precautions.

Dead or diseased animals and humans, spoiled food products, and suspicious packages are the most likely sources of biological contaminated Crime scenes microorganisms, toxins, or other products of infection may pose a serious hazard to investigators. Special portable equipment, including clothing, decontamination units, and appropriate sterile sampling supplies are necessary. Specimens should be collected and stored in sterile containers, transported on ice when appropriate, and supported by an appropriate chain of custody statement. Specimens should be screened with caution, considering the likely biological source, characterization and probable health of properties, effects specific microorganisms. [116, 117, 118, 119]

Decontamination and containment levels (BSL)

When biological agents are released into the environment, there is a risk of infection of humans and animals, as well as ecological consequences. To eliminate these sources of infection, it is necessary to study and apply the decontamination methods specific to the corresponding agent. Contamination can occur by various routes: skin contact, ingestion, inhalation, and so on. Sampling methods are the same as for the analysis of other hazardous objects. Decontamination is performed according to pre-prepared plans based on knowledge of symptoms, disease course, routes of infection, and so on.

Six biosafety levels (BSL) have been defined. The first two are designed for work with pathogenic agents that do not pose a significant risk to laboratory personnel, the community, or the environment; the last two levels for pathogens that cause serious diseases and diseases that can be disseminated by aerosols; and the fourth level for very dangerous pathogens. BSL level 3 is assigned to work with bacteria whose natural habitat is the environment and are therefore more likely to be introduced into the laboratory inadvertently. The defining element of BSL 3 is that laboratory personnel must work in biohazard safety cabinets. In BSL-3 laboratories, special structural and sanitary-technical measures must be ensured to prevent the release of microbes into the environment when the laboratory is under normal operating conditions. [120, 121, 122, 123]

Legal and ethical aspects of biological evidence handling

Legal and ethical issues arise at multiple stages of evidence collection, analysis, and interpretation in studies of harmful biological agents. The most pertinent concerns relate to the nature of research on biological agents, especially the dual-use risk of research with biological agents (DURC). If misused (for example, in the infrastructure of global terrorism), such research may lead to loss of life and destruction, as demonstrated by the historical use of infective agents as weapons of war throughout the last century.

DURC comprises biological agents and toxins with the potential to pose a serious threat to public health and safety, animal or plant health, or the environment. The nature of such research requires appropriate consultation, a strongly regulated institutional review process, and compliance with national standards and legislation.

Another key topic encompasses the guidelines, regulations, and practices for securing and preserving crime scenes. The vulnerability of biological materials requires careful biomonitoring, environmental contamination control, target protection, and forensic amniocentesis of explosive sources. From a forensic perspective, particularly important practical legal considerations consist of maintaining the chain of custody and establishing a secure collection, storage, and transportation procedure.

Special attention should be devoted to such aspects of forensic technology in evaluating real a priori evidence. In general discussions, gathering data throughout the sampling process may clarify these integral issues. The area of chain of custody primarily ensures that the evidence is not unintentionally altered or affected after original collection. Consideration should be given to possible future dissemination and utility, which may include revealing the agent involved, the possible source of release, or the intended target. Ultimately, the legal aspects controlling DL- and BSL-1 work performed at the collecting location may deserve scrutiny as such evidence is directed toward legal applications. [124, 125, 126, 127]

Chapter - 10

Molecular Forensic Typing of Pathogens

Pathogen strain characterization performs several functions relevant to the forensic context. Sub-species-level identification can facilitate epidemiological investigation by linking clinical or environmental isolates to a common source, while differentiation of closely related but distinct strains may support criminal prosecution. Distinction of geographic populations can provide intelligence on likely geographic sources of a pathogenic agent deployed in a biowarfare or bioterrorism incident. Sub-strain characterization of at-risk pathogens can assist in identification of emergent subspecies potentially posing direct public health threats. Forensic evidence may thus be bolstered by pathogen strain characterization using established targets such as single nucleotide polymorphisms (SNPs) and variable number tandem repeats (VNTRs), as well as additional markers deployed either for general strain typing or for genome-scale phylogenetic reconstruction. The latter approach can also be applied to data generated by metagenomic sequencing, enabling crude organism detection and the estimation of relative abundances alongside strain-level identification.

The forensic inference capacities provided by SNPs and VNTRs will increase dramatically as phylogenetic trees for a range of hazardous pathogens become better populated with geographically and temporally diverse strains. Automated data collection-achievable through ongoing development of low-cost, full-length 16S rRNA gene barcoding sequencing platforms-will

also facilitate near real-time tracking of such organisms within an outbreak context. Although less widely applied in forensic strain characterization, analysis of copy number variation in other chromosomal regions or genomic islands also offers the potential for increased discrimination. These tools together fulfill the target requirements appropriate for forensic sub-strain characterization of pathogens posing direct public health threats as well as for other taxa of latent interest [128, 129, 130, 131].

Strain typing, molecular fingerprinting, and source attribution

Describing how nucleic acid sequence variation can be employed to ascertain organismal source and origin, the fourth subsection details the forensic typology of biological agents frequently examined within detection and identification studies, including virus SNPs, bacterial VNTRs and MLSTs, and fungal markers of geographic or laboratory origin. Pathogen genomes have also provided the foundation for establishing phylogenetic trees to elucidate the geographic origins of bacteria and other microbes, in cases where the precise location of sampling is unclear.

The molecular typing of viruses and bacteria is vital during outbreak analysis, allowing precise monitoring of every step in its evolution and the assignment of geographic origin. Genetic variations control many biological traits, and one organism may be more active than others in a particular environment. Although some species have low reported levels of variation, sequencing small genomes at high depth can assist in resolving meta-omics studies where the genomic profiles of certain species remain poorly described. Polymorphisms in a pathogen delivered to a victim help illustrate the complete picture of the outbreak, while single-nucleotide polymorphisms (SNPs) of pathogens in fecal samples assist the monitoring of contagion and evolution. NGS

technologies have not only accelerated sequencing but also fueled molecular typing with a breadth and speed previously unreachable. Nevertheless, rapid NGS alone does not suffice for accurate typing. Phylogenetic trees remain necessary to filter sequencing errors, and OTUs and haplotypes must be defined carefully [79, 132, 133, 134].

SNP analysis, VNTRs, and phylogenetic reconstruction

Molecular typing techniques based on DNA sequence variability allow for high-resolution discrimination of closely related strains. Although whole-genome sequencing delivers the most information, other approaches such as single-nucleotide polymorphism (SNP) analysis and comparative phylogenetic studies based on restriction fragment length polymorphism (RFLP) or deletion/mutation incidence/absence, variablenumber tandem repeats (VNTRs), and multilocus sequence typing (MLST) can be explored. Aligned with high-throughput sequencing, these multiplex techniques provide rapid detection of the causative agent. Targeting strain types associated with specific geographical areas or laboratory sources bolsters forensic validity. Phylogenetic trees based on gene content or sequences of housekeeping genes or entire genomes support geographical or laboratory source attribution of microbial outbreaks.

Phylogenetic inference segregating pathogenic microbes into clusters with geographic or laboratory sources aids forensic investigations. Bacterial and viral sources of bioterrorism and biological warfare-related neurolathrind, brodifacoum, and other toxin outbreaks can be delineated accordingly. Nevertheless, the coupling of large databases and modern ML tools with metadatarich environmental data is also needed for accurate broader-scale pathogen source predictions. The reliable affixing of pathogens to specific environmental reservoirs or hosts is also necessary for

connecting phylogenetic groups with sporadic human cases or outbreaks [115, 135, 136, 137].

Linking pathogens to geographical or laboratory origins

Pathogen DNA sequences can reveal information about their geographic origin. Patterns in single-nucleotide polymorphism (SNP) distributions result from specific human, animal, and environmental factors within populations of the hosts of a given pathogen. SNPs are thus informative about the geographic distance from the newly sequenced isolate to a population in a specific geographic location where the pathogen is known to be endemic. In addition to SNPs, length variations in tandem repeats formed by DNA sequences ranging from 1 to a few base pairs can provide a fingerprint of a newly sequenced strain. The number of repeats at a variable number of tandem repeats (VNTR) locus can thus show whether the strain belongs to a widely distributed population or to a population with a restricted distribution. By analyzing DNA sequence information, the population structure of several microorganisms can be resolved and recombination patterns unraveled, allowing the construction of phylogenies that are more informative than those based solely on concatenated multi-gene sequence data. These types of analyses are relevant for linking a newly sequenced pathogen to the geographic origin of its source within the host population.

Genome assembly and phylogenetic analysis of pathogenic microorganisms also provide insight into whether a recent outbreak strain is related to a strain previously observed in nature. While not typically reported in clinical laboratories, detection of recent whole-genome sequences from the pathogenic strain causing a human disease can provide important forensic evidence. Under conditions such as breakdown of animal or human health defenses, members of certain pathogen populations known as an environmental reservoir may readily form

transmissible strains affecting animal or human health. Wholegenome sequencing of the pathogen isolated from the sick individual, combined with sequencing of another isolate for which biological, epidemiological, or toxin detection evidence points to bioterrorism, can reveal whether a clade or serotype has previously been detected in nature. This level of detail demonstrates how data generated primarily for outbreak monitoring or clinical patient health can also inform on forensic interest [138, 139, 140, 141, 67].

Chapter - 11

Toxin Detection and Biochemical Forensics

A wide variety of living organisms in nature are capable of producing toxic substances (toxins) that may be harmful to humans and animals. These toxins are usually classified based on their origin: plant (phyto), animal (zoo), or microbial (bacterial, fungal, or algal). Toxins can also be distinguished as exotoxins (produced during bacterial growth) and endotoxins (part of the bacterial cell wall). Toxins form biological evidence in forensic contexts, either through intentional introduction or incidental exposure during animal and plant disease outbreaks. Examples of key toxins include botulinum toxin, ricin, aflatoxins, and the paralytic shellfish poisons. Botulinum toxin is produced by Clostridium botulinum as an intracellular protein, but is released during cell lysis. The toxin is responsible for botulism and is a potential threat as a bioweapon or bioterrorist agent. Ricin is isolated from the castor bean (Ricinus communis), and is among the biothreat agents listed by the Centers for Disease Control and Prevention (CDC). Aflatoxins are mycotoxins produced by several Aspergillus species and are the most potent carcinogenic natural products known. The paralytic shellfish poisons and their analogs are a family of chemically related neurotoxins known to accumulate in shellfish. The risk of shellfish poisoning is due to contamination of shellfish with toxins produced by marine dinoflagellates.

The detection of these compounds involves the application of immunoassays and advanced chemical techniques. Forensic

biotechnology employs the principles and practice of analytical chemistry to develop novel methods for identifying small molecules. These methods find application in detecting botulinum toxin and ricin in various sample matrices, determining aflatoxin B1 in maize, and quantifying the paralytic shellfish poisons in mussels. Ultimately, the analysis of these compounds forensically serves to establish a biochemical link to the corresponding biological agent. [142, 143, 144, 145] [142, 143, 144, 145]

Identification of biological toxins (Botulinum, Ricin, Aflatoxins, etc.)

The study of toxins, substances having toxicity with a dose of a billionth of a gram per kilogram, is one of the most important areas in forensic science because of the importance of obtaining high-quality data and the legal consequences that can follow from the conclusions based on these data. Such studies require a highly developed chemical basis. For the detection of various toxins, specialized chemical and immunological analysis methods of different refinements have been developed and are in use; their selection is determined by the type and quantity of the toxin, as well as the conditions of its incorporation into the human body.

The group of bacterial toxins includes, among others, the toxins produced by Bacillus anthracis, Clostridium botulinum, and the pyogenic bacteria (C. perfringens, S. aureus). The most important of these is the toxin of B. anthracis, which leads to rapid death. As the death occurs before the characteristic signs of infection appear, the toxin can be found in the blood and tissues. The toxin produced by C. botulinum is extremely toxic: as little as 0.001 mg can be lethal to 70 kg. The cause of death is the paralysis of the sympathetic nerves, resulting in heartbeat failure. The amount of C. botulinum toxin in food products is generally very small, usually less than 10 ng per gram. For the biochemical assay of the toxin, the isolated and characterized antisera are

used. The toxin of C. botulinum acts on the neuromuscular junction of the central nervous system. Its preparation is acutely toxic and is present in various food products.

Analytical chemistry and immunoassay methods

Toxins represent a diverse group of biogenic poisons that can be produced by living organisms (plants, animals, fungi, bacteria, etc.) and exert a toxic effect on other organisms. These dangerous compounds (botulinum toxins, ricin and abrin, aflatoxins, etc.) act as harmful chemical agents that can be produced, stored, transported, and deployed like bacteria and fungi. Recent years have witnessed considerable progress in the development of various methods for toxin detection, ranging from classic chemical techniques and solid-phase enzymatic processes to molecular immunoassays based on monoclonal antibodies. Nevertheless, the hugely destructive potential of bioweapons containing toxins and other chemical agents continues to pose a significant threat to national and international security.

The relevance of these issues in the light of human forensic knowledge is confirmed by the apparent fact that the increased availability of pathogen-related methods can enable toxin production and detection in virtually any laboratory equipped for preparative chemistry. Hence, toxins can now be developed without the infrastructure or safety control measures required for working with living pathogens. In this context, the analysis of chemical complexity and the development of rapid and sensitive methods for the detection of an expanding range of biologically active agents remain a priority area of research in applied toxicology. The integration of techniques from analytical chemistry with concept-driven solid-phase immunoassays allows for multicomponent approaches to be realized for complex forensic and environmental samples where a broad spectrum of analytes is expected [146, 147, 148, 149].

Interpretation of toxin-related evidence in legal contexts

The toxins produced by the bacteria Clostridium botulinum and Ricinus communis, as well as the secondary metabolites of the fungus Aspergillus flavus, should be classified as "weapons of mass destruction," according to US military regulation. Detection and confirmation of these biological agents, their precursors, or toxin products in any context should initiate a law enforcement investigation. A. flavus infections are insults for which no US regulatory authority has developed a practical detection protocol, increasing the need for forensic evidence association with the suspected source. Testing for these agents by analytical chemistry and immunoassays determines whether a biological threat exists but does not address the criminality of the presence. A forensic approach combining detection with information regarding the case can assess the commission of a crime. The normal range for aflatoxin exposure provides an associated threshold below which detection does not imply a crime. For botulinum toxin in clinical samples, a false-positive diagnosis of poisoning can suggest that ulterior motives informed by either the clinical or toxicological results achievable with LC-MS/MS may be the cause. During consequent investigations, the quantitative results support interpretation of the discovered toxin not only as the weapon but in specific cases even as a secondary effect.

Of particular note is botulinum toxin. After a poorly planned but successful caper in Paris, removal of a rival from the restaurant circuit thwarted, arresting the mastermind proved much harder-an unknown toxin was discovered but without evidence of its source. Without a known method of classifying the incurred crime, the investigators could jump only to criminal thought. They were wrong: an accomplice had laced the dining-party dinner with botulinum toxin, cleverly escaping censorship for the act and evaded criminal detection. These consequences

show the inadequacy of botulinum toxin presence under these circumstantial conditions as valid evidence of any crime [150, 151, 4].

Chapter - 12

Case Studies in Forensic Pathogen Analysis

Biological attacks inspire widespread dread due to their complicated mechanisms, challenges to detection, and potential psychological effects. The 2001 anthrax incidents, though non-lethal for most victims, heightened alertness to the possibility of bioterrorism and provoked demand for comprehensive capability. Forensic analysis integrated innumerable data sources and involved high-level containment facilities. Other biological threats (plague, ricin) demonstrate that the need for forensic analysis of biological agents is not limited to infections. Multi-omic datasets have been successfully created for Bacillus cereus and Bacillus anthracis, underscoring the importance of supply chain checks and the synergistic value of combined data sources. Greater effort in this direction would increase pathogen detection accuracy.

The 1925 Geneva Protocol prohibits germ warfare, but such weapons were reportedly used in World War II and the Korean War and are now thought to have been developed in several countries. Biological agents are more accessible than chemical or nuclear weapons, and attacks using such organisms create intense media and public focus. Psychological effects can outstrip physiological consequences even with agents as serious as Bacillus anthracis. Thus, even a non-fatal release may nonetheless provoke an over-reaction. The letter-borne spores responsible for the 2001 anthrax events were responsible for five deaths but affected thousands more, overwhelming facilities and

causing a climate of fear. Defeating, detecting, and defeating biological agents is therefore a vital aim of forensic science [8, 152, 153]

The last decade has witnessed a troubling increase in the misuse of pathogenic biological agents for bioterrorism, sabotage, or criminal activities. Furthermore, opportunistic clandestine activities involving the use and spreading of pathogens for the new-generation production of biowarfare agents by non-state actors are also increasing. The rise of pandemic threats from a variety of sources, including natural outbreaks, an accidental release of biotech research, or the use of pathogens for deliberate harm, has further aggravated the defense public situation. Besides national and considerations, support for developing technological antiformulation and detection methodology for better preparedness against potential bio-attacks in the future has also increased.

In this regard, microbial forensics has emerged recently as a new and rapidly growing area of focus worldwide. In particular, genomic epidemiology applied to pathogenic organisms involved in biocrimes has proved to be significant. Whole-genome sequencing facilitates the identification and characterization of pathogenic microorganisms involved in illicit incidents such as bioattacks, and biowarfare, bio-sabotage. biocrimes. clandestine activities, the combination of genomic physicochemical approaches provides a means of tracing the source of pathogens. Apart from national defense and security applications, demand for forensic techniques across the public health sector, such as tracing or capturing the identity of pathogens involved in an outbreak of food or water contamination, also appears to be growing.

The methodology in forensic pathogen analysis. Collection, transport, and checkout of samples. Bioinformatics tools used for

analysis. Criteria to identify genuine signals. Interpretation and integration of results.

Forensic pathogen analysis investigates the source and transmission of infectious agents involved in alleged outbreaks. The examination of elections in response to unproven assertions, complemented by insights from scientific literature, has transitioned the debate from a focused inquiry into illegitimate ballots to a broad yet imprecise examination of the integrity of voting in the State [1].

Storage of evidence must permit unambiguous determination of provenance. Documentation should include standard chain-of-custody forms indicating handlers, dates, and times of transfer, as well as supplementary logs for specific events when appropriate ^[2]. Accompanying records must specify sample collection procedures and protocols, environmental conditions at the moment of collection, and transportation methods to the laboratory of analysis ^[3].

Samples are prone to contamination during collection, storage, transportation, and processing. Precautionary measures must therefore be in place-including gloves and disposable instruments-to minimise direct human contact and prevent cross-contamination. Such procedures should be clearly articulated in accompanying documentation along with descriptions of any sample pretreatment undertaken prior to analysis.

Long-term storage conditions at laboratories must also be recorded alongside metadata relating to samples-such as the date collected, source and owner of the material, and absence of contamination-as does any subsequent handling of the material.

Pathogen genomic sequencing supports forensic investigations of deliberate or suspected releases by increasing the spatial and temporal resolution of epidemiological analysis. Prior to sequencing, the pathogen must be broadly characterized

through immunological screening and culture, followed by multilocus open reading frame or multi-locus sequencing typing. For a released pathogen with limited health effects, the aim remains to produce pathogen genomes with a level of assurance sufficient to support certain forensic inferences. In such cases, cloud-based analysis of mutational profiles from whole-genome sequencing has helped to establish travel histories and provenance, thereby elucidating release scenarios and supporting precautionary public health measures [4].

Sequencing applications for public health, epidemiology, and food safety typically utilize the ill-defined "next-generation" laboratory method, denoting techniques that have largely supplanted Sanger-based approaches. Genomic data and pathogen transmission modeling permit retrospective declaration of epidemiological links after cases have been released. Data on the major and minor sequence variants contained in a genome can triple the promptness of such declarations, enhancing the protection of human health and safety. Where forwards and back-propagations of exposure transmit bioinformatic readings of pathogen sequences, such flows alone constitute a sophisticated formative evaluation of the root origin and intrinsic safety of the pathogen on contractual and return visits to the breeding site.

Authentication of pathogen samples is paramount and demands the most stringent oversight. A record of provenance is maintained from the time of collection onward, documenting the sample's origin, handling, storage, and transport, as well as the application of contamination controls. Careful consideration of the workflow is essential; there is no universally applicable sequence for collection, transport, pre-processing, or sequencing that would eliminate the possibility of contamination. Double-restricted fragment length polymorphism and short-sequence signature assays can authenticate strains whose origin is known ^[5]. The first step in pathogen forensic analysis is therefore to

query the sample in a way that does not compromise the integrity of the evidence or add other strains to the mix. For forensic purposes, multiple approaches can be employed, taking into account the character of the question and the available materials, while still attempting to achieve strain-specific indicators. An integrated analysis employing a battery of methods that target distinct properties of the strain is preferable. Pathogen pathways through cultures and isolates to stored material are rigorous but can still enrich the forensic understanding by giving access to temporal information never seen at a single time point.

Biological materials are analysed to determine whether they are the same or distinct. Automatic comparison of sequencing reads can establish genetic distances or whether the material belongs to a distinct biota not incorporated in the original. Other means are also available that probe facets of pathogenicity or downstream changes, signalling either an uninterrupted lineage or even the recovery of the same strain or preparation ^[6]. Even common strains, the so-called wild types, may have significant differences across space or time; singularities possessed by the studied material at one time or place can be probed. Path-ways and temporal-order reconstructions can be established through culture and further analysis, ensuring that cultures do remain a valid centre of inquiry.

Forensic pathogen analysis aims to detect the presence of pathogens with sufficient confidence to advise public health authorities and law enforcement. Individual results contain varying evidence strengths that can be quantitatively integrated. This interpretative framework draws on methodologies by the UK Forensic Science Service and Canadian forensic scientists [7]. It integrates four distinct, quantitative streams of evidence derived from sampling, sequencing, bioinformatics, and pathogen analysis [6]. The "K-Seq" sequence catalogue contains 52,000 prokaryotic fragments of genomes, over

epidemiologically relevant near-complete prokaryotic genomes, and ~551,000 DNA potential-pathogen sequences. Multiple lines of inquiry reduce the chance that a spurious signal has gone unnoticed during routine examination and accelerate forensic assessments. Evidence is weighted based on case context, helped by real-time reporting of results and knowledge of potential pathogens and their roles in the case.

In 2013, following a complaint from the Romanian Ministry of Health, the European Centre for Disease Prevention and Control (ECDC) considered a report of an outbreak of gastrointestinal disease associated with raw drinking milk from a farm in Copşa Mică, Romania. Following an investigation by the Romanian National Institute of Public Health, the ECDC concluded that insufficient evidence had been gathered regarding the initial complaints and related herd premises and that the outbreak was unlikely to have occurred. This case highlights the public health relevance of pathogen forensic investigations aimed at clarifying the potential public health impact of declared outbreaks. It also underscores the importance of genomic data and the bioinformatics infrastructure necessary to conduct them.

Genomic data pertaining to the outbreak, gathered in 2015, were reanalysed to explain and interpret the public health investigation. Short tandem repeat (STR) sequencing was performed on the Copşa Mică milk isolate and analysed with the national database designed for Mycobacterium bovis strains. The result confirmed that the isolate originated from a different herd than a previously associated one and was also highly dissimilar to that obtained from a clinical case in a nearby village that the earlier investigation had considered relevant. These findings demonstrate through genomic data the low probability of a causal relationship between the milk and the gastrointestinal disease and the unlikelihood of it being a zoonotic outbreak.

Following a complaint in 2013 about a putative 2012 outbreak of gastrointestinal disease linked to raw milk from Copşa Mică, Romania, the ECDC was asked to assess the outbreak based on genomic data for Mycobacterium bovis collected in 2015. The assessment confirmed the lack of epidemiological or genomic links between the Copşa Mică milk and the reported illnesses, thereby clarifying the public health significance of the investigation and the potential impact on interventions aimed at reducing the consumption of raw milk. [8]

The investigation of an outbreak of an unknown pathogen in a prison facility in Maine started on December 20, 2008. After DNA sequencing, no sequences related to any known viral pathogens from multiple samples and from multiple affected inmates were recovered, providing reassurance that the outbreak was not due to a known viral or bacteria pathogen. The Hudson County Public Health Office received an inquiry on December 29, 2008, followed by a state public health analysis on January 2, 2009. A second set of environmental samples was collected on January 3 and sent to the Centers for Disease Control and Prevention (CDC) and the Hudson County Public Health Office on January 5. Pathogen analyses by Hudson County did not identify any organism in 18 samples collected. On January 8, 2009, the CDC confirmed the absence of fungal pathogens. St. George's University and the CDC collaborated through a joint project on pathogen analysis at the office. The team conducted analysis of environmental samples. The underscored the importance of controlled throughput for samples received at analysis and highlighted the need for disentangling analytical inputs and the collection chain ^[6].

The investigative approach taken for the first case study is pertinent for events such as illegal clandestine releases or unintentional exposures encountered by law enforcement agencies. Proficiency in additionally tracing the origin of accountable involved parties, such as suppliers of precursor ingredients or patrons at end-user points, further enhances the forensic value of genomes archived in the resources available ^[9]. In a recent study characterized by retrospective investigation of a proclaimed 2014 outbreak, multi-tiered metagenomic analysis featuring 30 forensic criteria contributed toward the forensic 2.0 aims of ascertaining public health threats while simultaneously safeguarding all private legislation for intended restricted pathogen collections-a legal compromise engaged within similar past reviews, with a dedicated bioinformatics pipeline equivalent to the global-blueprint-level synopsis outlined herein being central to such further case-specific elaboration.

widespread availability of sequencing the technologies, the forensic science community remains largely unaware of extensive genomics research and tool development organism-hybrid-pathogen interactions, targeting epidemiological risk, biologics analysis, and sample security [1]. Groundbreaking academic evidence generation efforts involve significant infrastructure expenditure and costly technical oversight. Consequently, many laboratories adopt a tophat approach, engaged in harmless-yet-remedial genomic research while neglecting an evolving threat landscape. The outlook for Informed Pathogen Analysis (IPA), however, is highly favorable: sequence data is emphasised in contemporary civil investigations not only for broad-spectrum public-health support, but also in favour of legality and traceability. The burden now rests with individual laboratories to apply extant evidence-generation methodologies and satisfy stringent independence requirements for forward observation. A freely available informative intentanalyst-toolkit permits rigorous adherence to -a priori evidencestandardisation [6].

Contamination-free acquisition protocols meticulously account for all traceable sample handling from point-of-collection/storage/analysis through to eventual/reporting-

disclosure. Pathogen-Issuer Proximity analysis and Pathogen-Source Attributor scrutiny efficiently and quantitatively filter pathway routes among the hundreds of active contemporary options. Fungible follow-up acquisition is routinely possible, often minimising expenditure through straightforward publichealth study extension. By-products are similarly unrestricted with various well-established academic settings. Highly informative additional independent pathways are also openly non-proprietary. Altogether, these features form an effective deterrent to proactively-harmful motives.

Pathogen analyses within a forensic context commonly seek to establish a relationship between a pathogen and the original source of a sample. However, a pathogen may also be acquired from an unexpected or atypical source. The presented analysis deliberates a case in which an individual diagnosed with anthrax manifested a notably atypical clinical presentation. Nonetheless, detailed genomic pathogen analysis substantiated the use of trace-genomics methods for source attribution via direct exposure to a non-anthrax source. The uncommon disease manifestations observed in this case study illustrated the necessity of employing trace-pathogen analysis even when the clinical picture diverges from a typical presentation associated with the pathogen of concern.

A national health agency received multiple reports of anthrax infections throughout the United States, leading the agency to raise its threat level. Epidemiological investigations revealed anthrax exposure risk among individuals affiliated with animal rearing in local surroundings. Similarly, all four reported anthrax-infected individuals attended the same West Nile Virus educational session. Consequently, the health agency sought forensic pathogenic analysis to ascertain whether a link existed between the four symptoms of anthrax and the veterinarian facility responsible for the educational session [6].

Microbial pathogens are implicated in a variety of criminal and terrorist activities, including bioterrorism and the unlawful release of agents to defraud or divert public resources. Improving the detection, tracking, and analysis of such microorganisms is paramount to public health and safety. Microbial Forensics focuses on the analysis of pathogenic microorganisms from a legal perspective. A forensic-pathogen-investigation platform supporting the design and analysis of pathogen investigations was developed to improve the evidence-based biological forensic analysis of pathogens ^[6].

The investigation of a possible bioterrorism event-a supposed anthrax outbreak-demonstrates the significance of a sample provenance-supported analytical approach. In response to a petition for assistance from the Centers for Disease Control and Prevention, the United States Army Medical Research Institute of Infectious Diseases, and the Department of Defense, Microscopy and Analytical Imaging LLC performed a forensic-pathogen investigation of archived samples and concentrates.

Pathogen forensics deals with pathogens that affect public health and public safety. It requires structured evidence-based methodologies when work is done on pathogens alleged to be involved in deliberate use and those involving terrorist use. In most forensic investigations, a deliberate act is being tested and not for outbreak situations. Epidemiological investigation relies heavily on genomic analysis. Epidemiologists, working in the forensics context, document their chain-of-custody, sample provenance, handling procedures, storage and trace metadata. They follow laboratory technical and quality control guidance to do pathogen forensic work. Genomic testing must pass preannounced criteria by authorities before forensics work can be undertaken. Even with these controls, the work may be declared inadmissible as forensic evidence in trials of persons or groups accused of terrorist activities.

Case Study 2 focuses on a retrospective epidemiological investigation of an outbreak, which did not proceed to screening suspected contaminated products. The retrospective investigation includes consortium sampling, public health and European Food Safety Authority [10] reports, and detection of contaminated carrier products. The investigation was still regarded as forensics as it traced events back in time. Tracing and pathogenicity were compatible: suspected foodborne pathogenic outbreaks do not follow the same cladometric tree as bulk food products. Contamination of raw or processed food building blocks can occur at multiple steps. Video evidence supports multi-step contamination through the manufacturing process. An analytical workflow tailored to the forensic aspect of the study retained metadata documenting collection, chain-of-custody and filtering of a sample directly from a household. Copies of production logs were received from depositors outside the operator company. Time-lapse sequences of dosing and sample discharge in the manufacturing process were available from the operator.

Trace-pathogen analysis based on full-genome sequencing (FGS) was employed to evaluate a respiratory pathogen that was questioned as a cause of mass illness among attendees at an event in a confined space. The pathogen was ruled out during investigation of the outbreak. The complementary opportunity to examine specimens from an affected patient six months later made analysis feasible, which established the involvement of a different pathogen with no known association with the event. Cultured strains and environmental isolates were sequenced to complement the investigation by further ruling out a potential but geographically remote link.

Specimens collected through publicly accessible efforts were subjected to non-proprietary, minimalist sequencing libraries that followed local biosafety and decontamination protocols. Particlesize limitations for airstream samples were explicitly documented. Information was clearly disseminated to allow external replication and validation. Bioinformatic procedures documented in peer-reviewed systems-biology publications were adapted and transparently reported at each stage. An online resource facilitated direct query of relevant data extracted from widely used experimental-microbiology databases-specimens, strain collections, trace deposits, environmental contamination, and epidemiological findings. Contaminant analysis, other quality checks, and contemporary guidelines were diligently applied.

In the wake of the 2001 anthrax attacks, the careful investigation of deliberate release scenarios became an urgent priority for forensic public health. Covert dissemination of biological agents typically occurs without clinical recognition of contaminated exposure, as pathogenic organisms exist in nature and clinical presentations are often non-specific or too subtle to warrant immediate action. Microbial forensics cannot absolutely eliminate alternate pathways for organism theoretic and environmental source attribution. Resourceless tracer-pathogen analysis features standard, established, and fully validated protocols but remains vulnerable to uncertainty regarding provenance and origin.

The 2017 submission of Flavobacterium psychrophilum to NCBI GenBank as both RefSeq assembly and SRA study provided an opportunity to examine the significant potential of this methodology to assist with source attribution regarding nine distinct parameters. Should genomic data analogous to the strain of interest also appear exclusively in local requirements, then association with clandestine disposals, discharge, diversion, or dissemination efforts increases accordingly-a significant consideration in deliberate release investigations [11]. Genomic source-tracing analysis directly on both the first isolate of an

outbreak strain and its composition within subsequent environmental samples in adjudicated cases would also accrue to the deterrence of replay infection attempts.

Non-public datasets containing information about additional associated isolates of established and previously characterizable provenance that occupy identical genomic sequence space would permit additional adjunctive multi-events. Considerable opportunity exists for transnational virology and the elucidation of deliberate release scenarios [1] prior to public health involvement. Pathogen and genomics surveillance, especially overseas, can likewise affect preventive deployment or reply options [6]. Educating local health officials regarding the potential for fungal and protozoal origin enhancement remains similarly valuable.

In light of continuing circumstantial worldwide bioavailability and the presence of hazardous microorganisms among intergovernmental transmittances, the concurrent desistence from both surveillance and trace-finding constitutes a considerable risk. Knowledge of previously deposited or observed types found in legitimately maintained outflows also remains an essential consideration.

During a seminar on microbiological forensic science held in Duluth, Minnesota, in September 2001, Anthony D. Schreiber lamented that microbiological forensic science did not yet exist and was little more than an aspiration. Yet the subsequent years have seen an unanticipated surge of interest, enthusiasm, and progress in the field. Forensic microbiological science is now a fundamental research topic in a variety of disciplines, including evolutionary bioinformatics, microbiology, biology, environmental science, medicine, law, sociology, criminalistics. Although no single definition exists, the primary objective is to apply the scientific method to biological agents and their effects on human hosts in order to provide reliable and objective results that can improve the knowledge of such agents and assist in their control. Aims may include a better understanding of biological warfare and terrorism, differentiation between variants in biological investigations, and verification of biodefence exercises, although particular priorities will differ between nations according to local circumstances and needs ^[6].

Case Background and Objectives

In July 2019, as part of the World Health Organisation External Quality Assurance Scheme for Isolated Pathogen Genomic Characterisation, a sample sourced from a suspect case of anthrax in the UK was received for examination. The classical epidemiological investigation pointed towards the suspicion of intentional release. The laboratory was requested to employ genomic typing to determine whether the case could be linked to a previously identified outbreak in the UK in 2009. An additional sequencing exercise on a second sample, isolated during a necropsy, deposited under separate chain of custody and from a second potential anthrax case, was conducted.

The overall objective was to ascertain whether there was any forensic evidence linking the case under investigation to the 2009 UK anthrax outbreak and/or to the "spore kit" from the US 2001 anthrax case, hence providing insights into the potential intentional release of pathogenic microorganisms ^[11].

Epidemiological investigations conducted after the 2016 release of anthrax spores on a Russian military testing site that affected civilians in Siberia are considered a public health priority due to national preparedness measures. Understanding the threat of deliberate release of pathogenic organisms in the United States warrants increased scientific scrutiny. Such knowledge is also vital in the developing world, where biodefence may be insufficient. The deliberate release of an

organism or an infectious agent causing maximum morbidity and mortality, or damage to agricultural resources is of major concern to government agencies. Forensic investigations at the single nucleotide polymorphisms or whole genome levels can shed light on deliberate release of human and animal pathogens. Pathogen strain typing was used following the 2001 anthrax letter attacks. Source tracking numerical data from genomic DNA sequences at the 10-kilobase size scale has become possible using next-generation sequencing [11].

Forensic pathogen analysis involves a generic scientific strategy prioritizing the authenticity, reliability, and credibility of results. Three confirmed case studies demonstrate the versatility of the principles underlying forensic pathogen investigations. Applications range from retrospective evaluation of pathogen release claims through pathogen trace-back modeling of atypical outbreak scenarios and forensic elucidation of suspected bioincidents. Despite stark differences in context, methodological hurdles recur. Unambiguous demonstration of credible chain of custody, a fully documented sample history, and comprehensive, rigorous documentation of the analytical process constitute essential best practices in these investigations, fundamental to addressing inherent uncertainties and qualifying the forensic robustness of the findings reported. Accordingly, reporting standards encompassing sample metadata, analytical procedures, decision criteria, uncertainty estimates, interpretative conclusions emerge as critical safeguards for integrity. Resilience fundamental scientific to dual-use exploitation remains imperative, necessitating consideration of freedom of information prerequisites and secure dissemination modalities [1].

The majority of forensic investigations produce large amounts of information that can serve as the foundation for contributions to the Court and Public Health Authorities. Consequently, ensuring detailed records of custody and expert analysis remains paramount. Improvement in documentation regarding custody from sampling to analysis and throughout the interpretation phase requires attention. In most cases, a strict chain of custody remains elusive at the level of the epidemiological investigations. However, it is incumbent upon prospective expert instructed to assist microbiological or epidemiological analysis to record the basis of the investigation and provide the organisation responsible for the epidemiological investigation with sufficient information concerning the case by way of chain of custody for specimens analysed, determination of the data used to support the expert statements, and the relevance of the microbiological data provided [11]. Each of the five case studies reviewed provides additional insights into how better records of epidemiological case description, including the day and hour of each confirmed case, can reduce the number of alternative hypotheses for which expert microbiological contributions are requested.

In forensic science, chain of custody (CoC) refers to the procedures that ensure the preservation of specimens and documentation of the persons through whom they pass ^[12]. Building and maintaining CoC is critical for forensic pathogen analysis. The community recognizes the potential for contamination during specimen collection, transport, and storage. Extant guidelines for various specimen types therefore require documentation of personnel involved in these activities. CoC compliance constitutes a well-established best practice for forensic science and its articulation in the domain of forensic pathogen analysis would help underscore its relevance.

Forensic application of pathogen genomics presents distinctive challenges that distinguish it from other forensic domains, such as environmental forensics [6] or disaster forensics [10]. These differential characteristics arise from numerous events

conveyed anonymously via diverse transmission modes, with the potential for deliberate dissemination. Such events may be claimed or suspected in settings where actively pathogenic strains circulate naturally, or where hypothetical hazard scenarios are contemplated. Anonymity need not be confined to the sampling site; the sampled material may originate from an individual, a batch, a point in time, or an industrial process for which secure, trusted data is desired. Hence, events are perceived in broad spatial and temporal terms, surveying dissemination routes and sources of widely distributed risks across the population, rather than focusing narrowly on site- or time-specific material closely linked to an individual or a single intervention.

The anticipated anonymity, multiplicity of pathogen reservoirs, and the pervasive threat of zoonosis and eco-terrorism similarly influence the evidentiary framework. Other forensic domains may assess, for example, an agent-group implicated in a historical release; in the absence of a declared epidemiological event, this approach is of little utility in forensic pathogen analysis. Moreover, the regulatory setting for pathogenic germs is more stringent than for toxic or chemical agents, leading to stricter data sharing protocols. In many jurisdictions, for instance, public health consequences would preclude the release of ordinary DNA sequences from a declared pathogen.

Public health systems worldwide are increasingly vulnerable to the deliberate dissemination of pathogenic agents, whether through food, water, or air. Environmental monitoring and forensic science are central to investigating potential bioattacks, yet are hampered by the lack of methods and standards for collection and analysis. Forensic pathogen analysis focuses on cases where infectious agents are present and are needed to determine transmission routes and likely sources.

Legal and ethical considerations are paramount, primarily concerning privacy, security of fingerprint data, and dual-use risks. Forensic pathogen evidence, particularly related to transmissible agents, has additional constraints; public health guidelines limit sharing of genomes from such pathogens and certain agents classified as select agents are prohibited for non-compliance laboratories. Unless otherwise required, preliminary findings are not shared; where rigorous investigations become mandatory, forensic samples and additional monitoring seek to minimize operational impacts on investigation teams. Court proceedings ultimately govern the admissibility of forensic pathogen analysis results and recommendations remain general and methodology-focused rather than specific to cases.

Just as interdisciplinary studies highlight the complexity of natural outbreaks [11], forensic pathogen analysis raises intricate dual-use dilemmas. Stay-at-home orders and significant increases in home delivery during the COVID-19 pandemic encouraged thought experiments about home release of the Ebola virus, plague, and other high-pathogen agents. In the current political climate, bioweapons still rank among probable strategic responses due to high collateral damage and limited detection. Investigations into the 2001 anthrax case revealed a conceivable gain-of-function scenario. During forensic pathogen analysis, it is vital to consider whether Public Health Agency of Canada (PHAC) oversight applies. A specific study at the Alberta Research Council examined polymerase chain reaction (PCR) assays targeting an anthrax marker gene, as trace detection might indicate an intentional release, during routine surveillance on boreal forest insects. Outbreak investigations highlight whether a genome belonging to Bacillus anthracis remains fit-for-use during experiments due to trace-pathogen implications for archaeo-bacteriology.

Microbial forensics and pathogen-scale studies frequently examine Malayan tin mining sites, where Bacillus spp. spores, resembling anthrax, survived 2000-3000 years of excavation. Specific genome genotyping indicates B. anthracis existence around 5000 years ago. Lengthy sample provenance, therefore, does not necessarily prevent release consideration by security authorities, underlining the importance of proper and thorough documentation in any forensic analysis.

Criminal forensic evidence of a deliberate pathogen is relevant to attributing responsibility for an outbreak by establishing which agents were present at a specific location during a specified time frame. In some cases, it may serve to exonerate innocents and inform public health responses. The strains involved can connect other outbreak data to a common source like food or water. The strains can also suggest the environmental conditions for pathogen occurrence. Approaches to the analytical process, routine documentation, and reporting standards were identified from those across diverse incidents where forensic pathogen examination might be applicable [3].

Forensic evidence can assist in investigations of dubious, yet plausible, biocrime scenarios. The present case, with the pathogen presumably lost from the environment, involved an unusual premature age distribution and atypical clinical presentation for a claimed outbreak. No other sources of strain-specific evidence-such as food preparations, postal interactions, or contact with animals-were discovered. In executing and reporting retrospective forensic analyses of designated outbreak datasets, several recommendations arose based on the particulars.

Despite significant advances in technology and methodology, many unresolved questions persist in forensic pathogen analysis. Recommended areas for further research include integration of pathogen source attribution and drug-resistance assessment [11],

incorporation of dual-use monitoring ^[1], enablement of pathogen origin inference using low-coverage genome sequencing, and provision of guidance on reporting uncertainty in signal detection and source attribution. Candidates for the highest priority include development of standards for forensic-reporting practice and further exploration of processing strategies to infer outbreak sources of rapidly evolving "high-risk" pathogens.

Forensic pathogen analysis undertaken during outbreak investigations or forensic inquiries often aims to establish an independent and legally defensible connection between a pathogen, the environment, and associated infrastructure. Justifiable conclusions from methods and evidence that withstand public scrutiny can have far-reaching implications for the credibility of the scientific establishment and public health policy. The case studies collected here illustrate how independent investigation and clear documentation of analytic approaches can deliver probabilistic assessments of forensic significance in outbreak investigations, assist public health agencies in evaluating and responding to atypical cases, and provide insights into the handling of potential biological attack scenarios.

Independent investigations that strive to publish scientific findings in a timely manner and clearly articulate uncertainty, interpretation, and policy implications complement official outbreak responses. The retrospective investigation of a proclaimed outbreak examined the documentation and sequence data from the proffered etiological candidate, reasoning that cases reported during an ongoing outbreak of a similar disease might have marked the start of an independent outbreak. An analysis conducted more than 8 months after the outbreak declaration provided low-probability estimates of direct involvement while defining evidence of an operative capability. Policy implications included the potential for public health officials to misattribute biocrime outbreaks to alternative origin [1]

Detailed forensic investigations of real or simulated bioterror events

A particularly serious threat to national security stems from possible attacks on peaceful citizens using highly pathogenic biological agents. The consequences of the anthrax events in the USA in October 2001, resulting in 22 infections and 5 deaths, are clear. Equally serious are exposures to biological agents during biodefence research activities at the Army Medical Research Institute of Infectious Diseases (Fort Detrick, Maryland). Although attacks using plague and botulinum toxins have long been classified as acts of bioterrorism, several criminal cases involving modern forensic virus research are as yet not widely understood.

Strong etiological, genomic, proteomic, and metabolomic traces of a terrorist ricin attack at the United States Senate and castor bean toxin tests during the 1996 Defence of Japan Press conference underline the indispensable role of biotechnology in an integrated consideration of modern microorganisms and pathogens from forensics and pathology perspectives. Only such comprehensive biotechnological studies incorporating advanced clinical microbiology methods enable an in-depth understanding of the sources, dispersion, and impact of pathogenic microorganisms prevalent in the surrounding environment [154, 155, 156]

Lessons learned from anthrax, plague, and ricin cases Two Paradigms of Biological Pathology

Two notable paradigms characterized the signal and symbol of biological pathology throughout the twentieth century. The first focused on the human health dimension of these diseases and their agents, while the second considered applied biology in the context of warfare. Despite drastic differentiation in biological threat risk, intelligence investigations and disinformation efforts

comprehensively covered the spectrum of pathogenic zoology. Human–pathogen interaction mechanisms and virulence factor assemblages served as the biological toolbox that evidentially monitored the attributes and capabilities behind pathological declarations and exploratory productions of pathogenic biology. Empirical exploration of two foremost paradigmatic events utilized information relating to signal and symbol differentiation in both signal and symbol domains.

On the first front, the exceptional virulence of Bacillus anthracis and the classified risk level of an airborne transmission mode attracted the foremost attention of the scientific community, security agencies, and clandestine organism laboratories throughout the evolution of its pathology and biology. Consequently, rapid confirmation of a human case in the USA referred the risk to the forensics domain. Not only detection of the emerging agent in the attacked letters but the forensic question of how to ascertain its exact source and whether the entirety of B. anthracis signified a bioterrorism operation became the angle of public domain examination worldwide [19, 157, 158].

Integration of multi-omics data in forensic investigations Integration of multi-omics data in forensic investigations

Forensic analyses of pathogen biological agents typically involve an array of techniques and disciplines, collectively shedding light on the process of infection and the identity of the source. Nonetheless, detailed medical examination reports prepared by specialized medical laboratories are frequently underutilized. Conversely, modern terro(ri)sm analysis increasingly considers multi-omics analyses of bacterial pathogens as essential for attribution purposes or evaluation of chemical weapon usage. Both perspectives converge in studies of recent bioterrorism cases, for examination of forensics-associated pathogens, or when patients infected with a specific

pathogen are admitted to several hospitals within a short timeframe.

<...> For these reasons, functional genomics, proteomics, metagenomics. and metabolomics data generated from laboratory or field samples not only enable the detailed characterization of potential or confirmed forensic pathogens, but also contribute to the understanding of the entire infection process, strengthening subsequent forensic examinations and providing the means for more accurate identification, including likely routes of introduction and geographical origin. Such provide novel information that analyses can augment conventional forensic strategies, and address rapidly developing forensic challenges such as botulinum toxin risk assessment, the forensic detection of genetically modified organisms, highly pathogenic avian influenza virus potential usage as biological agents, and anthrax vaccines development and assessment. Ultimately, the application of multi-omics data retains the potential to forge new molecular or epidemiological connections even for previously analyzed forensics-associated pathogens. [159, 160, 144, 161]

Part - IV Emerging Trends and Ethical Implications

Chapter - 13

Artificial Intelligence and Data Analytics in Pathogen Forensics

Artificial intelligence (AI) and machine learning (ML) technology are rapidly disseminating into multiple domains, including forensic pathogen analysis. Diagnostic pattern recognition has long been automated with AI algorithms. AI is now predicted to outperform human pathologists in diagnosis. Automated detection of RNA sequencing reads provides a critical advantage in outbreak situations by accelerating pathogen identification. AI can also predict pathogenicity and virulence of new organisms. The application of ML to outbreak prediction of East African respiratory viral diseases illustrates how these tools may be used for public health. Beyond diagnostic support, AI is also applied to digital forensics and responses to cyber threats.

The use of digital technology in controlled scientific environments has resulted in the generation of large datasets that require careful curation and analysis. These efforts can also benefit from the application of AI and ML technology. The analysis of large amounts of accumulated data necessitates cloud systems, associated with big data 3.0 initiatives. Forensic laboratories increasingly apply robotic or other automated systems, improving the speed and consistency of completed assays. With big data becoming a reality, there is increased focus on cloud systems to enhance information-gathering and predictive power. Using these strategies, patterns can emerge in many different contexts and the information generated become

not only predictive but more general and clarifying [162, 163, 164, 165].

AI/ML in diagnostic pattern recognition and outbreak prediction

Artificial intelligence (AI) and machine learning (ML) offer novel and powerful approaches to detecting and predicting infectious disease outbreaks. Pattern recognition of pathogens in clinical and environmental samples is a highly active area of AIdiagnostics. The large number of biological, epidemiological, and environmental parameters that can be gathered during an outbreak opens additional opportunities for the use of AI/ML algorithms. These same data, when aggregated over many past outbreaks, can also facilitate epidemic and pandemic prediction. The post-SARS (2002-2004) and recent COVID-19 pandemic (2019-present) responses have led to major investments in data collection, management, and analytics across multiple scales of preparedness, from individual hospital systems to national and supranational agencies. This section focuses on a few examples of how current and emerging AI and ML technologies can assist with identification of infectious diseases, prediction of outbreaks, and prevention of cyberattacks on diagnostic systems.

Pathogen detection is a fundamental component of any public health system, whether reactive or pandemic preventive. Automated systems are well established in medical clinical microbiology laboratories but have so far failed to gain traction in the public health domain despite great potential. Applications of AI/ML in this area remain in nascent stages, primarily because it is still less cost-effective than human labor at autopsies. However, with the ongoing shortage of tech and medical workers, along with increases in their long-term costs and the ongoing pandemic, the demand for a cheaper replacement has never been greater. AI/ML applications also extend beyond

detection systems and diagnostic kits for microbes worldwide, catering to the dynamic and complex nature of microbiology prediction, detection, and identification methods. AI-based diagnosis, image analysis, characterization of high throughput, and automatic interpretation of sequencing data further widen the spectrum of clinical microbiology workloads [166, 167, 168, 169].

Big data integration and digital forensics of biological evidence

Integrating diverse biological expertise-clinical microbiology, genetics, virology, ecology, epidemiology, and forensic science-helps identify the source and intent of biological attacks. Data-mining methods applied to clinical metadata allow pattern recognition and prediction of disease outbreaks. Cyber forensics of social media, internet records, and public databases enable tracing and profiling of possible perpetrators. Big data and machine-learning models improve decision-making across various areas, including public health, prediction of crime, automated forensic evidence analysis, and cyber safety.

Surveying pathogen-associated big-data resources reveals that digital forensic analysis of these databases can aid public health surveillance and support various forensic examinations and investigations. Rapid-response detection aims to provide alerts about disease outbreaks, allowing preventive measures to mitigate effects. Cyber forensics focuses on evidence gathering and investigation, including preventive measures against digital crimes, deception detection, and profiling of suspects. Numerous areas, including public health, crime prediction, automated forensic analysis, and cyber safety, are enhanced by integrating big data and artificial intelligence [170, 171, 172].

Automation and cybersecurity in laboratory forensics

During the COVID-19 pandemic, scientists relied heavily on artificial intelligence and machine learning to identify pathogen characteristics such as genetic profiles and epidemiological patterns based on clinical specimens. Becoming aware of the importance of effective data management, big data analytics, and cyber-monitoring to minimize future outbreaks, scientists began developing an intelligent cyber-physical system to analyze pathogen sequence data in a non-expert format to detect important patterns in their dissemination. The enormous amount of data generated by the control of various infectious diseases required great cyber-support to record, analyze, and protect these rich data banks from cyber-attacks, which could mislead scientific conclusions and monitoring. Rapid analysis of the main characteristic patterns of clinical sample data had become a key factor during the pandemic.

Furthermore, much of the laboratory work in forensic microbiology involved data encoding and decoding, requiring a geneticist to program the main laboratory methodologies so they could be performed by a computer or a robot without human manipulation. Processing sensitive information related to dangerous infectious diseases and chemical agents required double supervision, including procedural analysis conducted concurrently by more than one laboratory to avoid mistakes and delays in reporting. This separated the analysis of defined patterns in non-sensitive samples from sensitive materials. Such automation appeared to provide future pandemic scenarios with the ability to structure rapid decision-making response patterns with the data available at the time. [115, 135, 67]

Chapter - 14

Ethical, Legal, and Biosafety Considerations

It is essential to scrutinize whether modern laboratory capabilities are being developed with appropriate legal, ethical, and biosafety frameworks, and if so, whether these frameworks are properly enforced. The scientific community cannot ignore Ethical Conduct in Research that poses a significant risk of generating biological agents or toxins that may be weaponized or pose a serious threat to public health and safety, agriculture, or the environment. Beyond the mandates primary safety, responsibilities for promoting public regulatory frameworks also encompass oversight processes intended to prevent harmful research and direct attention to the research questions that are most pertinent for society.

Dual-Use Research of Concern is defined as research that, based on its primary intent and purpose, is intended to benefit society, but that also has the potential to yield biological agents or toxins with negative consequences for society. Many countries and research institutions have implemented guidelines or oversight committees to evaluate ongoing and proposed work with the potential for dual-use concern. Most governments have developed or are in the process of implementing regulatory frameworks to address biosecurity, biosafety, and prevention of Dual-Use Research of Concern. In the United States, the National Science Advisory Board for Biosecurity provides advice on biosecurity and identifies elements of research that could be subject to enhanced oversight. Internationally, the UN Security Council's Resolution 1540 cites the need for bioscience expertise

and promotes responsibility. The United Nations adopted the Biological and Toxin Weapons Convention in 1972, and the U.S. National Science Advisory Board for Biosecurity issued a report on the need to address the misuse of synthetic biology [173, 174, 175, 176]

Dual-use research of concern (DURC)

Dual-use research of concern (DURC) involves studies with the potential to be misapplied for malicious purposes. The World Health Organization defines DURC as work involving non-weaponization research that may offer a heightened insight into or increased potential for the destructive use of an agent or its toxins within an unusually severe consequence scenario. A major DURC area is the research of human and animal pathogens and the resulting dual-use development of biological weapons by terrorist groups or states. In this context special attention is needed to ensure that the potential for misuse is minimized while remaining (for the greater good) an important feature of modern research.

Research on pathogens with obvious potential in weapons use is subject to varying degrees of regulation, from voluntary codes of conduct through government scrutiny to mandatory compliance regimes. The most widely endorsed set of guidelines surrounding DURC in today's biotechnology environment is the joint statement by the WHO and the United Nations Office for Disarmament Affairs for the study of highly pathogenic avian influenza H5N1, severe acute respiratory syndrome coronavirus, and also Middle east respiratory syndrome coronavirus durc. A pathogen agent identified as DURC necessitates automatic, albeit possibly scaled-back, uncovering of the research, although formal DURC agency approval may not be essential. Rather, the dual-use implications of such research may be carefully along with potential biosecurity risks scrutinized considering funding applications [177, 178, 179, 180, 181].

Regulatory frameworks for biotechnological and forensic work

Regulatory provisions governing biotechnology increasingly relevant to forensic studies that involve classical clinical microbiology and modern technological advances. The national and international legal frameworks that govern dangerous pathogenic agents-such as the prohibition on the development, production, and stockpiling of biological and toxin weapons, the Biological Weapons Convention (BWC), and the Convention on Psychotropic Substances, New York, 1971-as well as national laws designed to ensure that research on pathogenic microorganisms is not misused for malicious purposes are of vital importance. Research on virulent pathogenic microorganisms may be considered dual use when the knowledge generated could be misapplied or misused for harmful or malicious purposes. Dual-use research of concern (DURC) is defined by the U.S. National Institutes of Health as "life sciences research that, based on current understanding, could be reasonably anticipated to provide knowledge, products, or technological development that could be directly misapplied to pose a threat to public health and/or national security." This research, which is intended to increase knowledge of the virulence of microorganisms, the disease they cause, or the controlling infection, uses mechanisms for pathogenic microorganisms in biosafety containment levels BSL-3 or BSL-4. DURC has an adverse effect on the public because it may be made public that could be used by hostile actors for malicious positive activities or biological warfare.

Ethical issues that arise include safeguarding human health, recognizing the rights and interests of research participants, and avoiding bias and discrimination. The guidelines of the World Health Organization (WHO) on ethical issues in human genome research recognize the necessity of promoting Ramos of the

standard principles, right status, and safety of the creation and development of artificial human genetic materials. The Laboratory Biosafety Guidelines (second edition 2020) of WHO aim to reduce risks for laboratory work with pathogenic microorganisms. These guidelines include biosafety decisions at the biosafety committee level that address all aspects of containment and specify the biosafety level required according to the strain, pathogenicity, and geographical origin of the hazardous biological agent under study. The biosafety level of the laboratory is consistent with its national and international importance, and the regulatory information is controlled by the standard guidelines for specific pathogens or groups of pathogens. [182, 183, 184, 185]

International conventions and public health implications

The biological weapons program operated by the Soviet Union and subsequently Russia represents the most serious violation of the 1972 Biological Weapons Convention (BWC). Other violations may occur outside the framework of statesponsored development when non-state actors seek to acquire biological agents for terrorist purposes. Development of dual-use research in life sciences-research that can be applied to either basic or military purposes-prompted the U.S. National Science Advisory Board for Biosecurity (NSABB) and similar groups in other countries to endorse voluntary moratoriums until appropriate guidelines were established.

The use of biological weapons can have serious consequences even when the agents themselves do not constitute a major threat to human health. The 2001 anthrax letter attacks in the United States exacerbate the fear and hysteria associated with any deliberate release of a biological agent. One guiding principle in the global public health system is to ensure that any outbreak, whether natural or deliberate, is detected as early as

possible, that effective public health measures are initiated and that sufficient and adequate diagnostic capacity exists to provide necessary information in a timely manner. The risk posed by smallpox virus, variola major, in particular remains so great that the World Health Organization encouraged its complete eradication from nature through vaccination campaigns while an international agreement ensures that any remaining stocks are not misused, albeit with some risk.

Chapter - 15

Future Directions in Pathogen Detection and Forensic Biotechnology

Detection and forensic investigation of pathogenic factors and their effects have been greatly facilitated by rapid progress biotechnology. Major breakthroughs in particularly in next-generation sequencing-and the creation of new, easy-to-use molecular and immunological analyses, as well as advance in synthetic biology and associated technologies, can dramatically improve detection and diagnostics in the event of outbreaks caused by highly virulent and emerging pathogens. Forensic investigations can also benefit from these rapid technological breakthroughs, but great care needs to be exercised to ensure that data are of sufficient quality and accuracy for the sensitive assessments commonly required in legal situations. Technology can also help support intelligence analysis and investigations of suspicious outbreaks by enhancing data about normal, age-related, geographical, and environmental variation worldwide.

Artificial intelligence and machine learning can serve as decision support systems, for grouping or scaling anomalies in geographic information, diagnostic, timely health exchange pattern, pattern through analytical investigations with recommendation type predictors and outbreak prediction such as in cholera by a pattern analysis of past 40 years. Furthermore, big data and digital forensics with multi-organizational information can help in these aspects and in the safety of the biotechnological

field in many ways such as automation, information security, devising and assisting in critical situations, and monitoring of virus infections in cyber world. [186, 187, 188, 189]

Next-generation sequencing trends and synthetic biology risks

High-throughput next-generation sequencing (NGS) has diversified applications in pathogen detection, but its accessibility creates biosecurity concerns and makes it a valuable intelligence source for malicious actors. Portable equipment and nanotechnology-based biosensors enable field-based sample sequencing, while the emergence of low-cost, commercially available plasmids with bio-safety risks poses potential hazards. Concerns about directional and dual-use research of concern (DURC), especially in the context of synthetic and gain-of-function biology, are pressing risks that require a globally coherent regulatory framework. Investment in early warning networks and global biosurveillance would help ensure that the scientific community continues to help protect society against biological threats.

The capacity of artificial intelligence (AI) and machine learning (ML) to detect routine diagnostic patterns and trained predictions of future outbreaks has also been highlighted. Other biotechnology trends, such as the rapid growth of microbiome research, the impact of Big Data and new digital forensics, the possibilities of laboratory automation and robotics on testing processes, and the convergence of biotechnology and cybersecurity in DURC, have been confirmed [190, 191, 192, 193].

Integration of portable sequencing and biosensors in field forensics

Emerging pathogens pose continuous threats and open many research directions, including detection in environmental samples. Accordingly, metagenomic sequencing is rapidly advancing but remains rare outside specialist laboratories. Sequencing and sequence-based detection methods have received considerable attention but typically occur in centralized facilities. Early detection remains difficult. Increased risk from nefarious use or accidents demands portable methods for detecting known or emerging pathogens. Integration of portable sequencing and biosensors in field forensics enables reliable, legal detection of infection. Synthesis is achieved by combining informatics patterns from many sources with advanced data analytics and detection platforms for field-deployable forensic utility.

To mitigate emerging threat agents or exogenous use by terrorists, simple, inexpensive portable detection devices are needed to identify agents in environmental samples without requiring complex laboratories and specialist staff. For known agents, biosensors are being developed to detect nucleic acids, proteins, and metabolites. Mobile laboratories are also being used. Miniaturized, functionally complete bacteriological tests now exist. The multi-initiative Hand-Held Detection-Assured Biological Gates aims to demonstrate a basic set of field, indicator biosensors. When combined with copy number-based metagenomic sequencing approaches for unknown agents, this core toolbox of hand-held diagnosis for critical pathogens in forensically important matrices will allow for rapid assessment of biological threats during large public gatherings, in national parks, and at international borders [194, 195, 196, 197].

Vision for global pathogen surveillance and forensic preparedness

Work Title: Comprehensive Analysis of Pathogenic Factors Based on Modern Medical Laboratory and Biotechnological Techniques and Their Role in Forensic Detection of Biological Agents.

Artificial Intelligence and Data Analytics in Pathogen Forensics Artificial intelligence and machine learning detect patterns in microbiological data for precise diagnostics, inform outbreak prediction, and enable digital security of biological information. Digitally connected systems generate, curate, and mine big data, enhancing automatic detection of cyber threats, diagnosing, sampling, and detecting epidemics without human input. Forensic microbiology benefits from specialisation-driven intelligence tailored for pathogen bioweapons, biosafety, epidemiology, and forensics. Smart epidemiology integrates social networks with data from health, ecology, weather, air traffic, telecommunications, travel, and commerce to suggest outbreaks. Prediction models create epidemic-time special datasets that predict affected countries and bioweapon source. Predictive models forecast where an agent's genetic footprint will first become Regional Alert Monitoring Systems detect unusual pathogen strains in human or animal populations and identify likely sources. Historical epidemic databases have been used for classification of causative pathogens and epidemic prediction, although with lower accuracy, and are not yet capable of realtime prediction. Smart epidemiology uses digital social networks and cyber-media to determine the probability, location, and risk of epidemics in real time in order to alert health organisations and authorities.

Emerging big-data, cloud-computing, Internet of Things, optical-sensor, complementing technologies, and machine-learning analysis will synergistically automate diagnostic procedures in microbiology. Monitoring and prediction can be supported through standalone viral and bacterial whole-genome sequencing-based surveillance, meeting the standard for next-generation sequencing. Artificial-intelligence technologies for machine-learning-based network processing of pathogen biological data, such as accuracy and high computational

capacity at rapidly developing molecular biological facilities, have the potential to discover hidden information from the functional field, understanding and monitoring pathogen-type activity and operating mechanisms. Security and reliability of virus-transmitted disaster response, biological threat-related disruption, pathogen modelling, analysis, and other biological and chemical decision support bases may be improved through automation of digital-technology systems in combination with basic-processing-of-descriptive-research-based artificial intelligence.

Although they have numerous implications for policy, practice, and public health research, pandemic-hazard and disease-prevention problems associated with Dual Use Research of Concern-transformed-plants remain inadequately described or understood. Risk management necessitates precautionary, inclusive regulation within national and international legal frameworks, and international co-regulation of syntheticbiological approaches with potential for serious adverse consequences for global public health. A holistic view of all identified public-health risks predicts that the life-science sector becomes congested with early attempts to control the potential for consequences greater than applications that reduce contrived threat potential [198, 199, 200, 201].

Chapter - 16

Conclusion

Following a comprehensive analysis of pathogenic factors and modern medical laboratory and biotechnological techniques, the clinical links with forensic detection of biological agents have been clarified. Pathogenic organisms, along with associated mechanisms of infection and corresponding virulence factors, were described and compiled to provide context for applied, forensic-based analysis. Classical microbiology remains vital for clinical pathogen identification. Although nucleic acid detection is especially sensitive and rapid, PCR can produce false-positive results, and precedent case law indicates that legal decisions primarily rely on pathogenic culture. Genomics and proteomics have been used more extensively for epidemiology, outbreak clarification, and forensic attribution. Toxin detection and biotoxin identification have progressed through analytical chemistry and immunoassay development, but forensic casework remains rare. Emerging and advanced methods, such as biosensors and artificial intelligence, show great promise for future forensic deployment, providing they undergo rigorous validation. Dedicated field applications, attention to biosafety regulations and ethical concerns, and integration of multiple techniques are all crucial for reliable forensic and pathogen identification, as emphasized by twenty-first-century biodefence challenges. evolution of classical examination As the demonstrates, multi-omic approaches are likely to yield the richest insights. Yet without continued political support and sustained global oversight, future pathogens-with all their consequences-stand poised for renewed emergence.

References

- A. Takamura and T. Ozawa, "Recent advances of vibrational spectroscopy and chemometrics for forensic biological analysis," Analyst, 2021. rsc.org
- 2. H. Rajput, "Biological Evidence for Crime Investigation," Journal of Digital Security and Forensics, 2024. digitalsecurityforensics.org
- 3. G. Sellamuthu, A. Chakraborty, R. R. Vetukuri, "RNAi-biofungicides: a quantum leap for tree fungal pathogen management," Critical Reviews in..., 2025. tandfonline.com
- 4. A. M. Rawson, A. W. Dempster, C. M. Humphreys, *et al.*, "Pathogenicity and virulence of Clostridium botulinum," Virulence, 2023, Taylor & Francis. tandfonline.com
- 5. K. Afzal, M. Mujtaba, Y. Wang, and B. Zhou, "Effectors of plants pathogenic fungi and fungal like microbes: a comprehensive review on mechanisms, roles, and host interactions," Frontiers in Plant Science, 2025. frontiersin.org
- 6. D. Tin, P. Sabeti, and G. R. Ciottone, "Bioterrorism: an analysis of biological agents used in terrorist events," The American Journal of Emergency Medicine, vol. XX, no. YY, pp. ZZ-ZZ, 2022. nih.gov
- 7. S. L. Beale, T. R. Zolnikov, and C. M. Firebaugh, "A scoping review on category A agents as bioweapons," Prehospital and Disaster Medicine, vol. 2021, 2021. [HTML]
- 8. D. Tin, L. Cheng, H. Shin, R. Hata, F. Granholm, "A descriptive analysis of the use of chemical, biological,

- radiological, and nuclear weapons by violent non-state actors and the modern-day environment of threat," *Disaster Medicine and Public Health Preparedness*, vol. 2023. cambridge.org
- 9. S. J. Hosseini-Shokouh and R. A. Sheikhi, "The biological weapons threats and coping strategies for health promotion," *Journal of Education*, vol. 2021, pp. [page range]. lww.com
- 10. P. Chrystal, "Bioterrorism & Biological Warfare: Disease as a Weapon of War," 2025. [HTML]
- 11. M. L. Benton, A. Abraham, A. L. LaBella, P. Abbot, *et al.*, "The influence of evolutionary history on human health and disease," *Nature Reviews*, vol. 21, no. 1, 2021. nature.com
- 12. A. Rokas, "Evolution of the human pathogenic lifestyle in fungi," Nature microbiology, 2022. nature.com
- 13. S. C. Stearns and R. Medzhitov, "Evolutionary medicine," 2024. [HTML]
- 14. G. Dharmarajan, R. Li, E. Chanda, K. R. Dean, R. Dirzo, "The animal origin of major human infectious diseases: what can past epidemics teach us about preventing the next pandemic?" Zoonoses, 2022. scienceopen.com
- R. A. Weiss and N. Sankaran, "Emergence of epidemic diseases: zoonoses and other origins," Faculty reviews, 2022. nih.gov
- 16. W. A. Bower, K. A. Hendricks, A. R. Vieira, R. M. Traxler, "What is anthrax?", Pathogens, 2022. mdpi.com
- 17. G. C. Stewart, "Bacillus," Veterinary Microbiology, 2022. [HTML]
- 18. M. Doganay, G. Dinc, A. Kutmanova, and L. Baillie,

- "Human anthrax: update of the diagnosis and treatment," Diagnostics, 2023. mdpi.com
- 19. D. B. Wang, M. M. Cui, M. Li, and X. E. Zhang, "Biosensors for the Detection of Bacillus anthracis," *Accounts of Chemical Research*, vol. 54, no. 2021, pp. xxx-xxx, 2021. acs.org
- 20. H. Wang, W. Zhang, and Y. W. Tang, "Clinical microbiology in detection and identification of emerging microbial pathogens: past, present and future," Emerging Microbes & Infections, 2022. tandfonline.com
- 21. E. E. Hilt and P. Ferrieri, "Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases," Genes, 2022. mdpi.com
- 22. M. M. Hamza and S. Iftikhar, "Diagnosis Techniques and Molecular Research," pioneerpagepublishers.com, pioneerpagepublishers.com
- 23. L. Mughini-Gras and E. Benincà, "A statistical modelling approach for source attribution meta- analysis of sporadic infection with foodborne pathogens," Zoonoses and Public Health, vol. 2022, Wiley Online Library. wiley.com
- 24. L. Li, D. Novillo-Ortiz, N. Azzopardi-Muscat, *et al.*, "Digital data sources and their impact on people's health: a systematic review of systematic reviews," *Frontiers in Public Health*, 2021. frontiersin.org
- 25. J. Guzinski, Y. Tang, M. A. Chattaway, *et al.*, "Development and validation of a random forest algorithm for source attribution of animal and human Salmonella Typhimurium and monophasic variants of S. ...," Frontiers in ..., 2024. frontiersin.org
- 26. H. Haroon, S. Haroon, and N. A. Kumar, "The Overlooked Vector: Rethinking the Human Factor in Disease Transmission," APIK Journal of ..., 2025. lww.com

- 27. J. Toledo, M. M. Haby, L. Reveiz, *et al.*, "Evidence for human-to-human transmission of hantavirus: a systematic review," The Journal of ..., vol. XX, no. YY, pp. ZZ-ZZ, 2022. oup.com
- 28. P. Ruiz Cuenca, S. Key, K. A. Lindblade, I. Vythilingam, *et al.*, "Is there evidence of sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A systematic literature review," Malaria Journal, vol. 21, no. 1, 2022. springer.com
- 29. A. J. Kwok, A. Mentzer, and J. C. Knight, "Host genetics and infectious disease: new tools, insights and translational opportunities," Nature Reviews Genetics, 2021. nature.com
- 30. C. Buckee, A. Noor, and L. Sattenspiel, "Thinking clearly about social aspects of infectious disease transmission," Nature, 2021. nature.com
- 31. R. E. Baker, A. S. Mahmud, I. F. Miller, M. Rajeev, *et al.*, "Infectious disease in an era of global change," *Nature Reviews*, vol. 2022. nature.com
- 32. K. Yu, Z. Huang, Y. Xiao, and D. Wang, "Shewanella infection in humans: Epidemiology, clinical features and pathogenicity," Virulence, 2022. tandfonline.com
- 33. B. Peng, Q. Dong, F. Li, T. Wang, X. Qiu, "A systematic review of polycyclic aromatic hydrocarbon derivatives: occurrences, levels, biotransformation, exposure biomarkers, and toxicity," *Environmental Science & Technology*, vol. 2023, ACS Publications. [HTML]
- 34. P. Zhang, C. Carlsten, R. Chaleckis, *et al.*, "Defining the scope of exposome studies and research needs from a multidisciplinary perspective," *ACS Environmental Science & Technology*, vol. 55, no. 1, pp. 1-12, 2021. acs.org

- 35. M. P. Jimenez, N. V. DeVille, E. G. Elliott, J. E. Schiff, "Associations between nature exposure and health: a review of the evidence," *International Journal of ...*, 2021. mdpi.com
- 36. M. C. Nwadiugwu and N. Monteiro, "Applied genomics for identification of virulent biothreats and for disease outbreak surveillance," Postgraduate medical journal, 2023. oup.com
- 37. A. K. Wani, N. Akhtar, S. Sena, and J. Singh, "Microbial forensics: a potential tool for investigation and response to bioterrorism," Health Sciences Review, 2022. sciencedirect.com
- 38. D. D. Barman, "A review of the role of microbial forensics amidst bioterrorism threats and strategic measures needed to be taken in the 21st century world and India," Journal of Indian Academy of Forensic Sciences, vol. 2023. sagepub.com
- 39. M. Speruda, A. Piecuch, J. Borzęcka, "Microbial traces and their role in forensic science," Journal of Applied..., vol. 2022. wiley.com
- 40. V. Abrol, "Forensic science: Revealing the clues," in *Unlocking the Mysteries of Death-New Perspectives for ...*, 2024. intechopen.com
- 41. A. Authors, "The future is now: unraveling the expanding potential of human (Necro) microbiome in forensic investigations," Microorganisms, vol. XX, no. YY, pp. ZZ-ZZ, 2023. mdpi.com
- 42. B. Liu, D. Zheng, S. Zhou, and L. Chen, "VFDB 2022: a general classification scheme for bacterial virulence factors," *Nucleic Acids Research*, 2022. oup.com
- 43. B. Pakbin, W. M. Brück, and J. W. A. Rossen, "Virulence Factors of Enteric Pathogenic Escherichia coli: A Review," *International Journal of Molecular*, vol. 2021. mdpi.com

- 44. S.J.G. Ranasinghe, Z. Han, T. Perera, T. Tun, "Opportunistic Pathogen and Virulence Factor Dynamics Along Stored Manure, Receiving Soil and Green Leaf Continua in Wet Zone of Sri Lanka," Water, Air, & Soil Pollution, vol. 2025, Springer. [HTML]
- 45. S. Feng and Y. T. Wang, "Pathogenicity islands: origins, structure, and roles in bacterial pathogenesis," Molecular Medical Microbiology, 2024. [HTML]
- 46. D. Ryan, "Gene regulation in Bacteroides fragilis: adaptive control in a dynamic host environment," Microbiology and Molecular Biology Reviews, 2025. [HTML]
- 47. L. A. P. Iturbe, "Characterization of the Enterobacteriaceae-associated ROD21-like family of excisable genomic islands and study of excision in the pathogenicity island ROD21," 2021. researchgate.net
- 48. Y. Rakibova, D. T. Dunham, K. D. Seed, and L. Freddolino, "Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae," Msphere, 2024. asm.org
- 49. T. Albalawi, "Strategies for detecting bacterial biofilms: Unveiling the hidden world of microbial aggregates," Egyptian Journal of Soil Science, 2024. ekb.eg
- 50. T. H. Jakobsen, Y. Xu, L. Bay, *et al.*, "Sampling challenges in diagnosis of chronic bacterial infections," *Journal of Medical Microbiology*, vol. 2021. [HTML]
- 51. S. Zhang, X. Li, J. Wu, L. Coin *et al.*, "Molecular methods for pathogenic bacteria detection and recent advances in wastewater analysis," Water, 2021. mdpi.com
- 52. Y. Xu, Z. Wang, C. Li, S. Tian *et al.*, "Droplet microfluidics: unveiling the hidden complexity of the human microbiome," Lab on a Chip, 2025. [HTML]

- 53. S. S. Raghavendra, "Biological Weapons and Microbial Terrorism: Implications for Society and Security," Bio Research Journal, 2025. ethanpublication.com
- 54. T.J.J. Inglis, "A systematic approach to microbial forensics," Journal of Medical Microbiology, 2024. microbiologyresearch.org
- 55. L. K. Kurolt and J. Crnjac, "Bioterrorism and Microbial Forensics," Forensic DNA, 2023. [HTML]
- 56. M. A. Knoll, S. Steixner, and C. Lass-Flörl, "How to use direct microscopy for diagnosing fungal infections," Clinical Microbiology and Infection, 2023. sciencedirect.com
- 57. A. M. Borman, S. Mohammed, and M. D. Palmer, "Importance of appropriate processing and direct microscopic examination for the timely diagnosis and management of invasive infections caused by filamentous fungi," *Medical Mycology*, vol. 2022. oup.com
- 58. C. Zhang, H. Jiang, H. Jiang, H. Xi, B. Chen, and Y. Liu, "Deep learning for microscopic examination of protozoan parasites," *Computational and Biological Systems*, vol. 2022, Elsevier. sciencedirect.com
- A. M. Peri, P. N. A. Harris, and D. L. Paterson, "Culture-independent detection systems for bloodstream infection," Clinical Microbiology and Infection, 2022. sciencedirect.com
- 60. C. Akile, E. C. J. Claas, and S. A. Boers, "Revisiting diagnostics: the reliability of culture-independent detection of microbial pathogens by DNA sequencing needs improvement," *Clinical Microbiology and Infection*, 2025. clinicalmicrobiologyandinfection.com

- 61. S. Panwar, K. S. Duggirala, P. Yadav, "Advanced diagnostic methods for identification of bacterial foodborne pathogens: Contemporary and upcoming challenges," *Critical Reviews in Food Science and Nutrition*, vol. 2023, Taylor & Francis. [HTML]
- 62. S. M. Kindelay and K. A. Maggert, "Insights into ribosomal DNA dominance and magnification through characterization of isogenic deletion alleles," Genetics, 2024. biorxiv.org
- 63. J. L. Whitney, R. R. Coleman, and M. H. Deakos, "Genomic evidence indicates small island-resident populations and sex-biased behaviors of Hawaiian reef Manta Rays," BMC ecology and evolution, 2023. springer.com
- 64. L. Rathod, S. Mishra, S. Samuel, K. Yadav, "Development and validation of a PCR-based method to differentiate human sex in blood-fed Aedes aegypti (Diptera: Culicidae)," Tropical..., vol. 2024. researchgate.net
- 65. D. Peris, D. S. Lu, V. B. Kinneberg, I. S. Methlie, *et al.*, "Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection," PLoS, vol. XX, no. YY, pp. ZZ-ZZ, 2022. plos.org
- 66. C. McDonald, D. Taylor, and A. Linacre, "PCR in forensic science: a critical review," Genes, 2024. mdpi.com
- 67. M. Oliveira, K. Marszałek, M. Kowalski, A. Frolova, "Sequencing technologies in forensic microbiology: current trends and advancements," Forensic Sciences, 2024. mdpi.com
- 68. M. A. Ador, M. S. Haque, S. I. Paul, J. Chakma, and R. Ehsan, "Potential application of PCR based molecular methods in fish pathogen identification: a review," *Aquatic Studies*, vol. 2021. aquast.org

- 69. Y. H. Chen, S. Y. Lin, Y. T. Lin, S. P. Tseng, "Emergence of aac(6')-Ie-aph(2")-Ia-positive enterococci with non-high-level gentamicin resistance mediated by IS1216V: adaptation to decreased ...," *Journal of ...*, 2021. [HTML]
- 70. A. K. Das, M. Dudeja, S. Kohli, P. Ray, "High-level gentamicin resistance mediated by Aac (6')-Ie-aph (2")-Ia gene in Enterococcus species isolated from clinical samples in Northern India," *Indian Journal of ...*, 2022. lww.com
- 71. W. Lu, K. Li, J. Huang, Z. Sun, A. Li, H. Liu, "Identification and characteristics of a novel aminoglycoside phosphotransferase, APH(3')-IId, from an MDR clinical isolate of Brucella intermedia," *Journal of ...*, 2021. [HTML]
- 72. Q. Liu, X. Jin, J. Cheng, and H. Zhou, "Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens," *Molecular Medicine*, vol. 2023. spandidos-publications.com
- 73. E. Gerace, G. Mancuso, A. Midiri, S. Poidomani, S. Zummo, "Recent advances in the use of molecular methods for the diagnosis of bacterial infections," Pathogens, vol. 11, no. 2, 2022. mdpi.com
- 74. H. Satam, K. Joshi, U. Mangrolia, S. Waghoo, and G. Zaidi, "Next-generation sequencing technology: current trends and advancements," *Biology*, vol. 2023. mdpi.com
- 75. S. Purushothaman, M. Meola, and A. Egli, "Combination of whole genome sequencing and metagenomics for microbiological diagnostics," *International Journal of Molecular ...*, 2022. mdpi.com
- 76. S. Aminu, A. A. Ascandari, M. Laamarti, "Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities,"

- CritiCal Reviews in..., vol. 2024, Taylor & Francis. [HTML]
- 77. Y. Shi, G. Wang, H. C. H. Lau, and J. Yu, "Metagenomic sequencing for microbial DNA in human samples: emerging technological advances," *International Journal of Molecular*, vol. 2022. mdpi.com
- 78. B. E. Igere and U. U. Nwodo, "Molecular and Genomic Epidemiology of Non-O1/Non-O139 and O1/O139 Vibrio cholerae: A Molecular typo-genomics strategy for studying Emerging Potential ...," Journal of Applied Health Sciences and Medicine, 2024. jpub.org
- 79. N. Almasian-Tehrani and M. Alebouyeh, "Overview of typing techniques as molecular epidemiology tools for bacterial characterization," *Cellular, Molecular Biology*, vol. 67, no. 5, pp. 1-10, 2021. cmbr-journal.com
- 80. HMB Seth- Smith, AM Rooney, *et al.*, "Strain Typing (Bacterial, Viral, Fungal, and Mycobacterial)," Manual of Molecular ..., 2025. [HTML]
- 81. D. D. Wagner, R. L. Marine, E. Ramos, T. F. F. Ng, *et al.*, "VPipe: an automated bioinformatics platform for assembly and management of viral next-generation sequencing data," *Microbiology*, vol. 2022. asm.org
- 82. B. G. Lindner, K. Gerhardt, D. J. Feistel, *et al.*, "A user's guide to the bioinformatic analysis of shotgun metagenomic sequence data for bacterial pathogen detection," *International Journal of...*, 2024. sciencedirect.com
- 83. A. S. Espindola, "Simulated high throughput sequencing datasets: A crucial tool for validating bioinformatic pathogen detection pipelines," Biology, 2024. mdpi.com
- 84. J. J. C. de Vries, J. R. Brown, N. Fischer, I. A. Sidorov, *et al.*, "Benchmark of thirteen bioinformatic pipelines for

- metagenomic virus diagnostics using datasets from clinical samples," *Journal of Clinical ...*, vol. 2021, Elsevier. sciencedirect.com
- 85. K.K.K. Ko, K. R. Chng, and N. Nagarajan, "Metagenomics-enabled microbial surveillance," Nature Microbiology, 2022. nature.com
- 86. S.R. Kitchens, C. Wang, and S. B. Price, "Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review," Microorganisms, 2024. mdpi.com
- 87. R. Nodari, "Studying the plague: retrieving information from the past," 2022. depositolegale.it
- 88. S. Kang, C. Shi, J. Chang, F. Kong, M. Li, B. Guan, and Z. Zhang, "Label free-based proteomic analysis of the food spoiler Pseudomonas fluorescens response to lactobionic acid by SWATH-MS," *Food Control*, vol. 121, 2021. [HTML]
- 89. M. Chabas, O. Pible, J. Armengaud, "Label-Free Multiplex Proteotyping of Microbial Isolates," *Analytical Chemistry*, vol. 2023, ACS Publications. [HTML]
- 90. Y. Sivamani, K. N. Murthy, H. Sajal, and S. Elayaperumal, "Isotope labeling LC-MS for metabolomics of biofilm study and tracer-based biofilm metabolomics analysis," Microbial Biofilms, 2023. [HTML]
- 91. MMA Mohammed, JA Bruun, VK Pettersen, "Label-free quantitative proteomics of oral microbial communities," in *Metaproteomics: Methods and ...*, 2024, Springer. uit.no
- 92. G. N. Ijoma, S. M. Heri, T. S. Matambo, and M. Tekere, "Trends and applications of omics technologies to functional characterisation of enzymes and protein metabolites produced by fungi," Journal of Fungi, 2021. mdpi.com

- 93. P. Rajesh, R. Ajore, and H. Kaur, "Exploring Synergies of Microbial Metabolomics with Other Omics Techniques: Enhancing Drug Discovery and Pharmaceutical Production," in *Microbial Metabolomics: Recent ...*, 2025, Springer. researchgate.net
- 94. Z. Taj, S. Keishing, and I. Chattopadhyay, "Fundamentals and Applications of Omics in Microbiology," in *Omics Approaches in Biofilm*, 2025, Springer. [HTML]
- 95. I. Kurbatov, G. Dolgalev, V. Arzumanian, "The knowns and unknowns in protein-metabolite interactions," *International Journal of ...*, 2023. mdpi.com
- 96. S. N. Thomas, D. French, P. J. Jannetto, "Liquid chromatography-tandem mass spectrometry for clinical diagnostics," *Nature Reviews*, vol. 2022. nih.gov
- 97. A. Kulyyassov, M. Fresnais, and R. Longuespée, "Targeted liquid chromatography- tandem mass spectrometry analysis of proteins: basic principles, applications, and perspectives," Proteomics, 2021. [HTML]
- 98. Y. Tang, G. Yang, X. Liu, L. Qin, W. Zhai, "..., and high sensitivity for determination of 3-chloropropane-1, 2-diol in soy sauce via high-performance liquid chromatography—tandem mass spectrometry," Journal of Agricultural, vol. 2023, ACS Publications. [HTML]
- 99. C. Li, S. Chu, S. Tan, X. Yin, Y. Jiang, and X. Dai, "Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers," *Frontiers in ...*, 2021. frontiersin.org
- 100. S. Dixit, R. K. Dhaked, A. Yadav, J. Parashar *et al.*, "A battery of assays for chasing ricin and its activity," Toxicology Letters, 2025. [HTML]
- 101. I. S. Hosu, M. Sobaszek, M. Ficek, R. Bogdanowicz, "Boron-doped carbon nanowalls for fast and direct

- detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry," Talanta, 2023. sciencedirect.com
- 102. D. J. Swiner, "Development of Thread Spray Mass Spectrometry for Clinical Diagnostics," 2021. ohiolink.edu
- 103. Q. Ali, S. Ahmar, M. A. Sohail, M. Kamran, and M. Ali, "Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture," *Environmental Science and Pollution Research*, vol. 28, no. 3, pp. 3456-3470, 2021. [HTML]
- 104. C. Morris, Y. S. Lee, and S. Yoon, "Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma," Current Opinion in Biotechnology, 2021. sciencedirect.com
- 105. K. Dhiman, D. Sharma, S. Rana, R. Kumari, "Biotechnological tools for disease diagnostic," Biotechnological..., 2024, Springer. [HTML]
- 106. A. Sannigrahi, S. Ghosh, S. Pradhan, P. Jana, "Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion," EMBO, 2024. embopress.org
- 107. R. Abdelbaset, Y. El-Sehrawy, H. Shaat, and S. Shawky, "On-chip Flow Cytometry Utilizing the Dielectrophoresis and Ring Oscillator-based Capacitive Sensor," IEEE, 2025. ieee.org
- 108. E. Alves and B. M. Gurupadayya, "Next-Generation Miniaturized Separation Platforms: Converging Detection, Automation, and Sustainable Design for Intelligent Analytical Science," Critical Reviews in ..., 2025. Taylor & Francis. researchgate.net
- 109. A. Mencattini, V. Rizzuto, G. Antonelli, *et al.*, "Machine learning microfluidic based platform: Integration of Lab-

- on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate," Sensors and Actuators A, 2023. ciemat.es
- 110. L. Ngashangva and S. Martin, "Organ- on- chip for advancing CAR therapy," Clinical & Translational Immunology, 2025. wiley.com
- 111. A. Kumar, "Advanced Forensic Biotechnology," 2021. researchgate.net
- 112. H. M. Inuwa, I. M. Ezeonu, C. O. Adetunji, E. O. Ekundayo, "Medical biotechnology, biopharmaceutics, forensic science and bioinformatics," 2022. [HTML]
- 113. S. Antil and V. Joon, "Biotechnology in Forensic Science: Advancements and Applications," 2025. researchgate.net
- 114. M. Pylant and M. Ponce, "A review on the field of forensic science and different techniques that can be applied to identify the pathogen and perpetrator of a bio crime," The Cougar Journal of Undergraduate Research, vol. 2022, 2022, calstate.edu
- 115. A.E. Castro and M.C.A. De Ungria, "Methods used in microbial forensics and epidemiological investigations for stronger health systems," Forensic sciences research, 2022. oup.com
- 116. S. Hägg and J. Jylhävä, "Sex differences in biological aging with a focus on human studies," elife, 2021. elifesciences.org
- 117. A. Rauf, A. A. Khalil, S. Awadallah, S. A. Khan, "Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review," Food Science & Technology, vol. 2024, Wiley Online Library. wiley.com
- 118. M. Mkangara, "Prevention and Control of Human

- Salmonella enterica Infections: An Implication in Food Safety," International Journal of Food Science, 2023. wiley.com
- 119. S. J. Pitt and A. Gunn, "The one health concept," British Journal of Biomedical Science, 2024. frontierspartnerships.org
- 120. T. Joseph, "Management system approach for addressing biosafety and biosecurity of emerging pathogens in a biosafety level-3 core facility," Applied biosafety, 2021. liebertpub.com
- 121. B. Lv, Z. Zhou, J. Wang, Q. Niu, Y. Shi, and Y. Sun, "The study of biosafety risk identification and analysis for facilities in biosafety level 3 (BSL-3) laboratories," *Frontiers in Cellular*, 2025. frontiers in org
- 122. K. B. Yeh, K. Tabynov, F. K. Parekh, I. Mombo, "Significance of high-containment biological laboratories performing work during the COVID-19 pandemic: biosafety level-3 and-4 labs," *Frontiers in Bioengineering and Biotechnology*, 2021. frontiersin.org
- 123. W. Gao, Z. Wu, K. Zuo, Q. Xiang, L. Zhang, X. Chen, F. Tan, "From biosafety to national security: The evolution and challenges of biosafety laboratories," Laboratories, 2024. mdpi.com
- 124. T. D'Anna, M. Puntarello, G. Cannella, and G. Scalzo, "The chain of custody in the era of modern forensics: from the classic procedures for gathering evidence to the new challenges related to digital data," Healthcare, vol. 11, no. 3, 2023. mdpi.com
- 125. D. N. Premanand Narasimhan, "Ensuring the Integrity of Digital Evidence: The Role of the Chain of Custody in Digital Forensics," 2024. researchgate.net

- 126. F. F. Alruwaili, "Custodyblock: A distributed chain of custody evidence framework," Information, 2021. mdpi.com
- 127. U. Sisodia, "Chain of custody: scaling the investigation to the event," in *Crime Scene Management within Forensic Science*, 2022, Springer. researchgate.net
- 128. S. K. Alketbi, "The role of DNA in forensic science: A comprehensive review," International Journal of Science and Research Archive, 2023. uclan.ac.uk
- 129. N. M. Novroski and J. C. Cihlar, "Evolution of single-nucleotide polymorphism use in forensic genetics,"
 Interdisciplinary Reviews: Forensic Science, vol. 14, no. 1, 2022. wiley.com
- 130. IA Gutiérrez-Hurtado and ME García-Acéves, "Past, Present and Future Perspectives of Forensic Genetics," Biomolecules, 2025. mdpi.com
- 131. Y. Wen, J. Liu, Y. Su, X. Chen *et al.*, "Forensic biogeographical ancestry inference: recent insights and current trends," Genes & genomics, 2023. [HTML]
- 132. M. P. Trinh and M. K. Shin, "Challenges and advances in mycobacterial molecular typing," Annals of Clinical Microbiology, 2025. acm.or.kr
- 133. P. K. Roy, A. Roy, E. B. Jeon, C. A. M. DeWitt, *et al.*, "Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products," in Food Science and Technology, 2024. wiley.com
- 134. P. Mertowska, K. Smolak, S. Mertowski, "Immunomodulatory role of interferons in viral and bacterial infections," *Journal of Molecular*, vol. 2023. mdpi.com

- 135. R. Nodari, M. Arghittu, P. Bailo, C. Cattaneo, R. Creti, "Forensic microbiology: when, where and how," Microorganisms, 2024. mdpi.com
- 136. F. González-Candelas, "Genomic insights into deciphering bacterial outbreaks," Phylogenomics, 2024. [HTML]
- 137. T. Pearson, T. Furstenau, C. Wood, V. Rigas, *et al.*, "Population sequencing for phylogenetic diversity and transmission analyses," *Proceedings of the ...*, 2025. pnas.org
- 138. H. Yun, S. H. Lee, S. H. Gu, S. H. Lim *et al.*, "Typing of Yersinia pestis in Challenging Forensic Samples Through Targeted Next-Generation Sequencing of Multilocus Variable Number Tandem Repeat ...," Microorganisms, 2025. mdpi.com
- 139. A. Angers, J. Drabek, M. Fabbri, M. Petrillo, "Whole genome sequencing and forensics genomics," 2021. europa.eu
- 140. A. S. Ferdinand, M. Kelaher, C. R. Lane, A. G. da Silva, "An implementation science approach to evaluating pathogen whole genome sequencing in public health," *Genome Medicine*, vol. 13, no. 1, pp. 1-11, 2021. springer.com
- 141. B. J. Parcell, S. H. Gillespie, K. A. Pettigrew, *et al.*, "Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks—hype or help?," Journal of Hospital Infection, vol. 2021, Elsevier. sciencedirect.com
- 142. A. M. A. Ikbal, R. Debnath, and S. Thomas, "Forensic Drug Chemistry: Unravelling Evidence Through Scientific Analysis," in *Biotechnology and Drug*, 2024, Springer. [HTML]

- 143. C. D'Ovidio, M. Bonelli, E. Rosato, A. Tartaglia, and H.İ. Ulusoy, "Novel applications of microextraction techniques focused on biological and forensic analyses," *Separations*, vol. 2022. mdpi.com
- 144. H. U. Rehman, H. Tufail, A. Raza, A. Arooj, "The Forensic Science of the Future: A Journey through Omics Technologies," *Journal of Allied Health Sciences*, 2026. jbahs.pk
- 145. M. F. Ullah, Y. Khan, M. I. Khan, and B. S. Abdullaeva, "Exploring nanotechnology in forensic investigations: Techniques, innovations, and future prospects," Sensing and Bio-Sensing Research, vol. 2024, Elsevier. sciencedirect.com
- 146. G. Qiu, X. Zhang, A. J. deMello, M. Yao, and J. Cao, "Onsite airborne pathogen detection for infection risk mitigation," Chemical Society Reviews, vol. 2023. rsc.org
- 147. H. M. Valenzuela-Amaro, A. Aguayo-Acosta, and others, "Emerging applications of nanobiosensors in pathogen detection in water and food," *Biosensors*, 2023. mdpi.com
- 148. A. Zarepour and M. R. Venkateswaran, "Bioinspired nanomaterials to combat microbial biofilm and pathogen challenges: A review," *ACS Applied Nano*, vol. 2024, 2024. [HTML]
- 149. M. Jabran, M. A. Ali, S. Muzammil, A. Zahoor, F. Ali, *et al.*, "Exploring the potential of nanomaterials (NMs) as diagnostic tools and disease resistance for crop pathogens," Chemical and Biological Engineering, vol. 2024, Springer. springer.com
- 150. S. Giri, E. Tronvik, M. Linde, and S. A. Pedersen, "Controlled studies evaluating Topiramate, Botulinum

- toxin type A, and mABs targeting CGRP in patients with chronic migraine and medication overuse headache: A ...," 2023. sagepub.com
- 151. D. Gao, C. Li, Y. Jin, D. Sun, Z. Chen, "Clinical Efficacy and Safety of Botulinum Toxin A Injection into the Bulbospongiosus Muscle for Treating Lifelong Premature Ejaculation: A Systematic Review and ...," American Journal of ..., 2025. sagepub.com
- 152. T. R. Guarrieri and C. J. Meisel, "Extremists and unconventional weapons: examining the pursuit of chemical and biological agents," Behavioral Sciences of Terrorism and Political Aggression, vol. 2021, Taylor & Francis. [HTML]
- 153. D. Tin, F. Granholm, A. Hart, and G. R. Ciottone, "Terrorism-related chemical, biological, radiation, and nuclear attacks: a historical global comparison influencing the emergence of counter-terrorism medicine," Prehospital and Disaster Medicine, vol. 36, no. 4, pp. 1-10, 2021. [HTML]
- 154. Y. Ryan, "Bioinformatic and laboratory approaches for the detection of exposure to biological and chemical weapons," 2023. liverpool.ac.uk
- 155. C. J. Kim and F. Ewann, "Challenges and Gaps in Bioterrorism's Detection and Investigation," Archibald Reiss Days, 2024. kpu.edu.rs
- 156. G. Sam, J. Stenos, S. R. Graves, and B. H. A. Rehm, "Q fever immunology: the quest for a safe and effective vaccine," npj Vaccines, 2023. nature.com
- 157. F. Moradi, N. Ghorbanian, N. Hadi, F. Khashyar, "From Pathogenicity to Therapy: Investigating the Therapeutic Potential of Bacillus Anthracis Anthrax Toxin in Novel

- Cancer Therapies and Oncological Research," Archives of ..., 2025. [HTML]
- 158. Z. R. Barandongo, "Anthrax in African wildlife: Bacillus anthracis spore survival, bacteriophages and genomic diversity in southern Africa," 2023. wisc.edu
- 159. N. Procopio and A. Bonicelli, "From flesh to bones: Multiomics approaches in forensic science," Proteomics, 2024. wiley.com
- 160. B. Dutta, D. Chatterjee, N. Sarkar, D. Lahiri, and M. Nag, "Multi-omics technology in detection of multispecies biofilm," The Microbe, 2024. sciencedirect.com
- 161. J. Li, Y. Wu, M. Liu, N. Li, L. Dang, G. An, X. Lu, and L. Wang, "Multi-omics integration strategy in the post-mortem interval of forensic science," Talanta, 2024. [HTML]
- 162. G. S. Khokhar, A. Samad, A. Joseph, and N. Singh, "Applications of Robotics: An Advanced Approaches in Forensic Investigations," in *International Conference on ...*, 2023, Springer. [HTML]
- 163. A. Jarrett and K. K. R. Choo, "The impact of automation and artificial intelligence on digital forensics," Wiley Interdisciplinary Reviews: Forensic Science, vol. 13, no. 1, 2021. wiley.com
- 164. X. Chango, O. Flor-Unda, P. Gil-Jiménez, "Technology in forensic sciences: innovation and precision," Technologies, 2024. mdpi.com
- 165. T. Janarthanan and S. Zargari, "Forensic Investigation in Robots," Latin-American Journal of Computing, 2024. shu.ac.uk
- 166. A. Elbehiry, A. Abalkhail, E. Marzouk, and A. E.

- Elmanssury, "An overview of the public health challenges in diagnosing and controlling human foodborne pathogens," Vaccines, 2023. mdpi.com
- 167. V. Vashisht, A. Vashisht, A. K. Mondal, J. Farmaha, "Genomics for emerging pathogen identification and monitoring: Prospects and obstacles," 2023. mdpi.com
- 168. M. Aladhadh, "A review of modern methods for the detection of foodborne pathogens," Microorganisms, 2023. mdpi.com
- 169. S. Szabó, B. Feier, D. Capatina, M. Tertis, "An overview of healthcare associated infections and their detection methods caused by pathogen bacteria in Romania and Europe," *Journal of Clinical*, vol. 2022. mdpi.com
- 170. F. Ekundayo, "Big data and machine learning in digital forensics: Predictive technology for proactive crime prevention,'," Complexity, 2024. researchgate.net
- 171. K. Fernando, "A multidimensional framework for utilizing big data analytics and AI in strengthening digital forensics and cybersecurity investigations," Journal of Cybersecurity Risk Management, Forensics, 2023. hashsci.com
- 172. S. Fatima, "Public Health Surveillance Systems: Using Big Data Analytics to Predict Infectious Disease Outbreaks," *Research in Engineering Technology & Science*, 2024. researchgate.net
- 173. K. M. Berger, "Technological advances that test the dualuse research of concern model," *Applied Biosecurity: Global Health, Biodefense, and ...*, vol. 2021, Springer, 2021. [HTML]
- 174. T. Novossiolova and D. Perkins, "Life sciences professional responsibility in an age of dual-use research," One Health & Risk Management, 2021. cyberleninka.ru

- 175. A. Vaseashta, "with Emerging Security Threats from Dual-Use Technologies," in Developments and Advances in Defense and ..., 2025. [HTML]
- 176. K. L. Warmbrod, K. Leins, and N. Connell, "8. Biosecurity, Biosafety, and Dual Use: Will Humanity Minimise Potential Harms in the Age of Biotechnology?" in *... to Existential Risk Studies*, 2023. oapen.org
- 177. M. R. Hickman, D. L. Saunders, C. A. Bigger, *et al.*, "The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections," PLoS Neglected Tropical Diseases, vol. 16, no. 5, 2022. plos.org
- 178. T. Sun, J. Song, M. Wang, C. Zhao, and W. Zhang, "Challenges and recent progress in the governance of biosecurity risks in the era of synthetic biology," *Journal of Biosafety and ...*, vol. XX, no. YY, pp. ZZ-ZZ, 2022. sciencedirect.com
- 179. J. Y. Fan, Y. Huang, Y. Li, T. A. Muluh, S. Z. Fu, *et al.*, "Bacteria in cancer therapy: A new generation of weapons," *Cancer*, vol. 2022, Wiley Online Library. wiley.com
- 180. A. R. Badea and O. Feeney, "Genome editing dilemma: Navigating dual-use potential and charting the path forward," Journal of Bioethical Inquiry, 2025. springer.com
- 181. C. A. Mouton, C. Lucas, and E. Guest, "The operational risks of AI in large-scale biological attacks: A red-team approach," 2023. dtic.mil
- 182. W. Health Organization, "Laboratory biosecurity guidance," 2024. google.com
- 183. B. Ficociello, D. Giordano, F. Incoronato, *et al.*, "WHO laboratory biosafety manual: A new approach to security," Annals of Work, 2023. academia.edu

- 184. D. R. Callihan, M. Downing, E. Meyer, L. A. Ochoa, "Considerations for laboratory biosafety and biosecurity during the coronavirus disease 2019 pandemic: applying the ISO 35001: 2019 standard and high-reliability ...," *Journal of Biosafety*, vol. 2021. liebertpub.com
- 185. N. E. Cornish, N. L. Anderson, D. G. Arambula, *et al.*, "Clinical laboratory biosafety gaps: lessons learned from past outbreaks reveal a path to a safer future," *Clinical Microbiology*, vol. 2021. nih.gov
- 186. R. Ali, A. Hussain, S. Nazir, S. Khan *et al.*, "Intelligent decision support systems-An analysis of machine learning and multicriteria decision-making methods," Applied Sciences, 2023. mdpi.com
- 187. S. Gupta, S. Modgil, S. Bhattacharyya, and I. Bose, "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, vol. 2022, Springer. [HTML]
- 188. K. Ouanes and N. Farhah, "Effectiveness of artificial intelligence (AI) in clinical decision support systems and care delivery," Journal of medical systems, 2024. [HTML]
- 189. O. Higgins, B. L. Short, S. K. Chalup, "Artificial intelligence (AI) and machine learning (ML) based decision support systems in mental health: An integrative review," *International Journal of ...*, 2023. wiley.com
- 190. V. A. Lepakshi, "Machine learning and deep learning based AI tools for development of diagnostic tools," in *... novel therapeutic and diagnostic designing to mitigate ...*, Elsevier, 2022. nih.gov
- 191. M. J. Iqbal, Z. Javed, H. Sadia, I. A. Qureshi, A. Irshad, *et al.*, "Clinical applications of artificial intelligence and

- machine learning in cancer diagnosis: looking into the future," *Cancer Cell*, vol. 2021, Springer. springer.com
- 192. S. Agarwal, A. S. Yadav, V. Dinesh, K. S. S. Vatsav, "By artificial intelligence algorithms and machine learning models to diagnosis cancer," *Materials Today*, vol. 2023, Elsevier. [HTML]
- 193. N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, "Evaluation of artificial intelligence techniques in disease diagnosis and prediction," Discover Artificial Intelligence, 2023. springer.com
- 194. L. Ngashangva, B. A. Hemdan, M. A. El-Liethy, V. Bachu, "Emerging bioanalytical devices and platforms for rapid detection of pathogens in environmental samples," Micromachines, 2022. mdpi.com
- 195. M. Alonzo, R. Alder, L. Clancy, *et al.*, "Portable testing techniques for the analysis of drug materials," Forensic Science Reviews, vol. 2022, Wiley Online Library. wiley.com
- 196. W. K. Abdelbasset, S. V. Savina, D. Mavaluru, *et al.*, "Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: Recent advances," Talanta, 2023. [HTML]
- 197. M. Ateia, H. Wei, and S. Andreescu, "Sensors for emerging water contaminants: overcoming roadblocks to innovation," *Environmental Science & ...*, 2024. nsf.gov
- 198. S. Musunuri, J. B. Sandbrink, J. T. Monrad, M. J. Palmer, "Rapid proliferation of pandemic research: Implications for dual-use risks," Mbio, vol. 12, no. 5, 2021. asm.org
- 199. D. R. Gillum, "Balancing innovation and safety: frameworks and considerations for the governance of dualuse research of concern and potential pandemic pathogens," Applied Biosafety, 2025. liebertpub.com

- 200. D. Banerjee, J. R. Kosagisharaf, and T. S. S. Rao, "'The dual pandemic'of suicide and COVID-19: A biopsychosocial narrative of risks and prevention," Psychiatry research, 2021. nih.gov
- 201. S. P. Simonovic and Z. W. Kundzewicz, "Floods and the COVID- 19 pandemic-A new double hazard problem," *Wiley Interdisciplinary Reviews: Water*, vol. 8, no. 5, 2021. wiley.com