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Abstract 

 

Microbial infections continue to emerge as a leading cause of 

widespread morbidity and significant mortality on a global scale, 

impacting millions of lives each year. Timely and accurate 

detection of various pathogens is absolutely critical for ensuring 

effective treatment options and for curtailing the further spread 

of these infections within communities and populations. The 

human microbiome-the incredibly complex collective of 

genomes and diverse interactions of the microbial communities 

that exist on and within the human body-plays a pivotal role in 

shaping infectious disease dynamics and overall health 

outcomes. The specific composition of the microbiome 

significantly influences not only pathogen carriage rates but also 

the intricate transmission dynamics and overall expression of 

various diseases. However, the full predictive power of 

microbiome data has yet to be completely harnessed for practical 

diagnostic applications that could revolutionize patient care. This 

groundbreaking work proposes an innovative modular suite of 

artificial intelligence (AI) tools that are uniquely capable of 

seamlessly integrating existing microbiome-disease knowledge 

alongside a wide array of diverse multi-omic datasets. This 

integration substantially enhances the overall identification of 

viral, bacterial, and fungal pathogens, regardless of any previous 

sequencing or culture results that may have been obtained in 

routine laboratory practices. These advanced and sophisticated 

approaches work diligently to accelerate the robust development 

of crucial microbiome-informed diagnostic models. Such models 

will take into account specific pathogen trajectories and broaden 

the application of genomics-guided decision support systems 

within the expansive field of infectious disease management. 



Ultimately, this will lead to significantly better patient outcomes, 

more effective public health strategies, and the potential to save 

countless lives by addressing the challenges posed by microbial 

infections more effectively [1, 2, 3].  
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Chapter - 1 

Introduction to the Human Microbiome 

 

 

The human microbiome refers to the collection of organisms that 

inhabit the human body, which includes bacteria, archaea, fungi, 

and viruses. These organisms colonize the skin, oral cavity, and 

gut after birth and play important roles in bodily functions, such 

as digestion and immune function. The microbiome contains 

approximately 100 times as many genes as the human genome; 

thus, it profoundly influences a range of biological processes. 

Imbalances to health-promoting microbiome functions are 

associated with numerous health issues, ranging from 

inflammatory bowel disease, diabetes, and antimicrobial-

resistant infections. Systematic investigation of microbial 

communities using high-throughput sequencing techniques has 

yielded an extensive catalogue of species prevalent in diverse 

human populations and has revealed how microbial community 

composition changes from healthy states. The human 

microbiome is an extraordinarily promising target for early 

detection and therapeutic intervention. 

The microbiome influences both the innate and adaptive 

immune systems, which helps dictate the success of vaccine and 

therapy responses. Specific immune-related signals generated by 

the microbiota regulate front-line innate immune defences, 

including the production of antimicrobial peptides and mucus, 

and shape the composition and function of distinct CD4+ T 

helper, regulatory T-cell, and T follicular helper populations. 

Many of the same microbiota-derived signals and populations 
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remain important for managing the severity of subsequent viral, 

bacterial, and parasitic infections. 

The literature describes observations linking shifts in 

microbiome community structure to numerous health and disease 

phenotypes. Healthy, disease-predictive, and infection-predictive 

microbiota have also been associated with infections by species 

such as Clostridium difficile, Pseudomonas aeruginosa, and 

pathogens capable of causing sepsis. Pathogen-host-microbiome 

triads have been defined to describe these interconnections [4, 5, 6]. 

Overview of the human microbiome (gut, skin, oral, etc.) 

Different ecosystems colonize the human body such as the 

gut, skin, vagina, and mouth. The gut microbiome and its 

functioning have been studied extensively and provide insights 

into the ecological dynamics of the other ecosystems. The 

dominant phyla in the gut are Firmicutes and Bacteroidetes, and 

their relative abundance varies according to age, diet, and other 

factors. Microbiome shifts impact the host’s health and are linked 

to chronic diseases. Knowledge of the microbiota extends to the 

skin and oral environments, and ongoing investigations continue 

to explore these ecosystems. Microbiome disturbance is expected 

to provide information about the health state of their 

corresponding sites and other anatomical areas [7, 8, 5]. 

Role in health and disease 

Dysbiosis, an alteration in the composition of the microbiota, 

is increasingly associated with inflammatory and infectious 

diseases [5]. Rodent studies identified microbial community 

changes linked with conditions ranging from obesity to stress, 

while disease signatures have been connected with fibrosis and 

Crohn’s disease in humans. Microbiota independence is defined 

as the absence of assembly and functional correlation between 

the gut microbiota and the disease. Immunological processes 

triggered by microbiota can affect pathogen clearance, and a 
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multi-kingdom docking model connects dysbiotic communities 

to infection susceptibility. Several studies have generated 

association maps that link communities, edge counts, and 

genotype variations across major infectious diseases, 

highlighting the early microbiota establishment window [9]. 

Importance in immune system regulation 

The human microbiota comprises a vast array of 

microorganisms, including bacteria, viruses, archaea, fungi, and 

microbial eukaryotes, and occupies all body surfaces. Despite 

their small proportions, these microorganisms significantly 

influence a wide range of physiological processes [9]. During 

birth, the microbiota starts to develop based on maternal factors, 

environmental exposure, and other factors. The configuration 

continues to change throughout life, driven by many factors, 

including environmental, diet, antibiotics, hygiene, 

contraceptives, health issues, climate, and more. There is a need 

to obtain high-quality and high-throughput metagenomics data to 

predict the health status and health conditions of humans. 

There are four critical and significant elements that must be 

thoroughly considered when addressing any form of infection: 

the pathogen, the host, the immune system, and the microbiome. 

Of these, the dynamics of the microbiome surrounding infections 

contain vital and essential information about both the pathogen 

and the host. Gaining a deep understanding of these intricate 

interactions, particularly in the periods before treatment initiation 

and during the treatment process itself, can lead to innovative and 

effective solutions aimed at improving infection control and 

overall management strategies. The human microbiome is 

currently studied in its entirety through a comprehensive 

approach known as multi-omics, which includes metagenomics, 

metatranscriptomics, metabolomics, resistomics, and various 

other methods. This extensive research framework is employed 
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to obtain as much detailed information as possible about a wide 

range of certain medical conditions and diseases, enhancing our 

understanding of how infections can be managed more 

successfully [10, 11, 12].  
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Chapter - 2 

The Era of Precision Medicine 

 

 

Definition and evolution of precision medicine 

A new generation of personalized frameworks divides 

individuals into groups that share common features for 

stratification and clinical decision support. Personalization now 

extends beyond the genomics of single genes and diseases. A 

growing family of signals, encompassing virome, resistome, 

immunome, and metabolic features, together with artificial 

intelligence (AI), excels at rapidly categorizing individuals and 

calibrating treatment strategies for infectious pathogens. These 

extensions complement precision medicine approaches and 

surmount existing gaps in standard stratification systems, which 

do not yet accommodate the diversity of pathogen, transmission 

route, and clinical presentation arising from the same human 

source [4]. 

Precision medicine is fundamentally about ensuring that the 

correct treatment is delivered to the appropriate patient at the 

optimal moment. However, traditional medical frameworks 

frequently treat various pathogens, including fungal, viral, and 

bacterial, in a somewhat undifferentiated manner. This lack of 

specificity can lead to suboptimal treatment outcomes. In 

contrast, precision microbiome medicine introduces an essential 

new dimension by incorporating the microbiome into the 

discussion. This approach offers a complementary and clinically 

significant way to characterize the individual patient. It 

emphasizes the critical role that the microbiome plays in 
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modulating the body's response to various pathogens, ultimately 

influencing treatment efficacy. By understanding these 

interactions, healthcare providers can better tailor interventions 

that take into account the unique microbiome composition of 

each patient, leading to improved therapeutic strategies and 

individualized patient care [13, 14, 15, 16].  

Integration with genomics and personalized healthcare 

The diagnostics of infectious diseases have significantly 

benefited from the integration of advanced genomic technologies 

and-more recently-from a more expansive definition of precision 

medicine that incorporates not only host and pathogen data but 

also comprehensive microbiome data. During an outbreak of an 

infectious disease, obtaining genomic sequence information from 

the pathogen often takes precedence over the patient’s own 

genomic data when it comes to determining the most appropriate 

treatment strategies that can be implemented. A thorough and 

detailed temporal along with spatial understanding of pathogen 

transmission dynamics is also absolutely critical for designing 

and implementing effective containment measures that can help 

curb the spread of the disease. By utilizing pathogen genotypic 

information for not just the diagnosis but also the treatment and 

prevention of infectious diseases, it becomes possible to adopt 

and implement personalized approaches that are strikingly 

similar to those utilized in genomically driven precision 

medicine. Technological advances in pathogen nucleic acid 

extraction techniques and high-throughput sequencing methods 

have enabled these innovative concepts to be seamlessly 

translated into routine clinical applications. Moreover, the 

incorporation of machine learning algorithms can further 

enhance the accuracy and efficacy of these diagnostic methods, 

leading to improvements in patient outcomes [17, 18, 19, 20].  
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Limitations of traditional one-size-fits-all models 

Various definitions of precision medicine abound, yet they 

emphasize personalization: diagnoses, disease mechanisms, 

treatments, or intervention outcomes individualized to the 

patient. The precision medicine framework is increasingly 

embraced for infectious diseases, as artificial intelligence (AI) 

augments stratification and decision-support capacities [21]. 

Traditional one-size-fits-all metrics, however, continue to 

predominate in clinical microbiome diagnostics. Pathogen 

acquisition risk, microbial community structure, and potential 

therapy responses are a few characteristics presently modeled 

with generic, population-averaged parameters [22]. 

These metrics-along with microbiome-guided pre-, pro-, and 

post-antibiotic treatments-form the basis of many clinical 

applications. Precision microbiome medicine addresses systemic 

gaps in the individual-level diagnostic strategies available for 

complex infections and other microbiome-influenced diseases. 

For infectious diseases in particular, the objective is to 

supplement current one-size-fits-all approaches with highly 

controlled, individualized guidance that draws upon a richer 

combination of microbial signals and attributes and encompasses 

pathogen-screening activity [23, 24, 25].  
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Chapter - 3 

Infectious Diseases in the Age of Microbiome 

Science 

 

 

How microbiome imbalances contribute to infection risk 

The human microbiome, the community of microbes 

inhabiting the human body, governs numerous health aspects. A 

balanced microbiome contributes to immunity, hosts pathogen 

competition, and protects against infectious diseases. 

Conversely, a dysbiotic microbiome disrupts immune 

homeostasis, harbours pathogen reserves, and impedes 

successful treatment. These imbalances partly explain the high 

infectious disease burden, wherein existing pathogens exploit 

medically privileged body parts to proliferate unchecked, 

highlighting the need for improved diagnostics to aid efficient 

decision-making. Targeting one of the foremost infection risk 

factors, the World Health Organization selected pathogens 

accountable for a significant global mortality share as the priority 

list for diagnostic aid [26]. Such diagnostics favour the 

identification of at-risk individuals over the pathogens directly 

responsible for transmission. 

Contemporary models in the field of microbiology suggest an 

imbalance-competitor-restoration triad as a fundamental 

framework underpinning the risk associated with pathogen 

development. This triadic relationship illustrates how a dysbiotic 

microbiota can lead to the elimination of competently controlled 

bacteria, allowing for the unchecked proliferation of infection-

prone pathogens. Upon recruitment, driven by specific behaviors 
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or environmental factors, a verified pathogen can proliferate 

without effective natural competition. Several classical 

examples, including notorious pathogens such as Clostridium 

difficile, urinary tract infections, and sepsis, aptly illustrate the 

complexities and nuances of this triadic relationship. These are 

not merely isolated incidents but rather fundamental 

representations that underpin microbiome-aware predictive 

approaches in modern research. The explanatory frameworks 

derived from these examples inform and guide the choice of 

microbiome signals, which are closely associated with infection 

risk. Furthermore, they illuminate the various modalities that 

render the datasets amenable to machine learning techniques. 

This involves methodically identifying the types of inputs 

required, as well as the necessary properties that these inputs 

should possess to provide accurate predictions and enhance our 

understanding of pathogen dynamics in relation to the gut 

microbiome [5, 27].  

Pathogen-host-microbiome interactions 

Understanding pathogen-host-microbiome interactions is 

crucial for the design of precision microbiome medicine 

strategies. These interactions can be direct or indirect, are highly 

dependent on host and microbiota characteristics, and influence 

infection outcome. Understanding them helps to identify 

microbiome-based diagnostic targets and informs the design of 

microbiota-targeted infection prevention strategies. Two 

classical infection prevention examples are C. difficile-

associated disease and uropathogenic E. coli (UPEC) urinary 

tract infections (UTIs) [28]. The microbiome protects against 

recurrent C. difficile infection, while the presence of specific 

commensal strains appears to protect against symptomatic UPEC 

colonization. A third example highlights the potential use of C. 

albicans to monitor the risk of sepsis due to dysfunction of key 

bacterial genera [29, 15, 13, 30] 
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Examples: C. difficile, UTIs, sepsis 

C. difficile, UTIs, and sepsis have been extensively 

investigated for pathogen-host-microbiome interactions, making 

them ideal case studies to illustrate the contributions of 

microbiome data to pathogen identification. 

C. difficile, a common cause of antibiotic-associated 

diarrhoea, has a complex relationship with the host and 

microbiome. Antibiotic treatments can cause microbiome 

dysbiosis, leading to C. difficile overgrowth and recurrent 

infection. In cases of nosocomial C. difficile infection, strains 

from environment-colonizing patients may establish secondary 

infections in susceptible individuals. These infection cycles 

highlight the utility of microbiome information in predicting 

possible C. difficile infections, underscore the opportunity for AI 

support, and demonstrate the complementarity of 16S and 

metagenomic data [9]. 

Urinary tract infections (UTIs) are among the most prevalent 

hospital-acquired infections. The urinary microbiome varies 

significantly among individuals, introducing the possibility of 

microbiome-guided UTI diagnostics. Considering causality, 

UTI-associated pathogens are likely to overpopulate the urinary 

microbiome just before symptom onset. These dynamics 

establish a clear target for predictive modelling of UTI risk and 

demonstrate compatibility with 16S and metagenomic data. 

Sepsis, frequently triggered by bacterial infection of the lung, 

abdomen, urinary tract, or skin, is the most severe and lethal form 

of hospital-acquired infection. The interplay among invading 

pathogens, host immune response, and microbiome modulation 

has been well mapped through microbiome profiling over the 

disease trajectory. 
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Chapter - 4 

Microbiome Profiling Technologies 

 

 

16S rRNA sequencing 

Microbiome diagnostic applications of 16S rRNA data entail 

amplifying and sequencing selected hypervariable regions of the 

16S rRNA gene via polymerase chain reaction (PCR). 16S rRNA 

gene amplicons are relatively resilient to storage conditions, 

freezers, and thawing, allowing the use of samples archived from 

polymicrobial soaking, dilute plating, and other preservation 

methods [31]. Certain physiological processes (e.g., antimicrobial 

treatment) and lifestyle factors (e.g., diet, probiotics, and other 

dietary supplements) curtail time windows throughout which 16S 

rRNA data remain biologically relevant. A variety of database-

independent and database-dependent bioinformatic pipelines are 

available to process and analyze raw 16S rRNA sequence data, 

each with distinct performance characteristics, system 

requirements, and available computational resources and 

software. 

The primary limitations of pathogen detection from 16S 

rRNA data largely stem from the uncertain source attribution of 

the microbiota that is being sampled and the imperfect selection 

of the hypervariable region during the analysis process. 

Sequences that are originating from pathogen 16S rRNA genes 

occasionally fail to cluster effectively with adjacent terminal 

restriction fragments in database-independent analyses, which 

complicates the interpretation of the results. Additionally, these 

sequences cannot consistently serve as reliable filters in 
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database-dependent scenarios, leading to further complications 

and uncertainty in the detection process. Furthermore, some 

pathogen ribosomal operons may be found to differentiate 

multiple copies of the 16S rRNA gene per genome, which means 

that the compatibility with broadly useful bioinformatic 

workflows continues to decline and poses challenges for 

researchers striving for accurate pathogen detection. This 

intricate situation highlights the need for improved 

methodologies in microbial analysis [32, 33, 34].  

Studying microorganisms that inhabit natural environments, 

extreme conditions, foodstuff, and living organisms has 

fascinated scientific minds since Leeuwenhoek and Pasteur first 

observed them. The microbiome refers to the microorganisms in 

a given environment, the interactions between these 

microorganisms, and the environment itself. The corresponding, 

high-resolution characterization of all genomic material derived 

from a community of microorganisms is defined as 

metagenomics. Over the past two decades, advances in nucleic 

acid-based sequencing technologies have inspired the 

development of multiple microbiome-profiling methods; notable 

progress among these scientific efforts has driven a surge of 

microbiome research investigating host physiology, disease 

aetiology, biogeochemical cycling, and ecosystem functioning 
[1]. 

Microbial diversity and functioning can be assessed through 

characterizing microbiome composition, metagenome content, 

and metatranscriptome quantity. Characterization encompasses 

ad hoc isolation plus cultivation or deploying cultivation-

independent approaches. The former relies on inoculating 

specimens onto predetermined selective media and subsequent 

growth to one or more colonies by free propagation. This process 

broadly delivers the identity of predominant community 

members using classical microbiological techniques and 



 

Page | 13 

preserved isolates for further screening. Assembly and 

reconstruction via currently available genome-resolved 

metagenomics techniques can yield genome sequences for 

suspected isolated microbiome members. Although these 

pioneering methods have greatly accelerated the understanding 

of microbial diversity and ultimately bacterial taxonomic 

identification, taxonomic classification remains behind 

biogeochemical, ecosystem-functional, and ecological-function 

characterization of the microbiome [2]. 

The term microbiome refers to all microbial genomes present 

in a given habitat [1]. A metagenome is the ensemble of all the 

microbial genomes in a given community. It can be many times 

larger than the metagenomes of individual taxa combined, due to 

the presence of dissimilar and incomplete genomes. Community 

profiling quantifies taxonomic or functional metagenomic 

composition to assess community change. Profiling remains 

popular because accessibility is high and complementary-current 

sequencing costs favour larger numbers of samples over greater 

depth, and light rain is straightforward to assess. Nevertheless, 

specific analysis of metagenomic, metatranscriptomic, or 

metaproteomic sequences gathers further insights of primary 

ecological and molecular interest. 

Microbiome-sampling efforts date back to 1991, when 

microbiota-tailored nucleic acid extraction and amplification 

lowered contamination and amplification bias risk. The Scientific 

Foundation “Microbiology Grant No. 5905” propelled initial 

extension of cultivation-independent specimen characterisation 

beyond the 20-character ribosomal DNA target and machine-

learning Rectors towards comprehensive empirical water 

characterisation through automated sequence-based extraction of 

total and functional water profiles. The 1990s saw taxonomic-

objective 5S amplification-internal standards and custom 

automated extraction-transcription-by-analytical copying of 
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prev-XXXX removal proceed, followed by blend-in replacement 

of macro-organisms by micro-organisms [2]. 

Microbial communities have colonized and influence 

practically every ecosystem on Earth, impacting environmental 

sciences, agriculture, and human health. The field of microbiome 

science or microbiomics focuses on microbial composition, 

diversity, and function as they interact with environmental 

features. Microbiomics has become a large interdisciplinary field 

incorporating microbiology, chemistry, metatranscriptomics, 

metaproteomics, metabolomics, cultivaromics, ecology, 

phylogenetics, systems biology, and much more. It is rapidly 

growing, leading to a rise in novel analytical approaches to parse, 

curate, and analyze multi-omic data. These tools and data-types 

make it increasingly difficult to interpret, compare, standardize, 

and benchmark the quality of data and methods in a consistent 

way. These issues confound the ability to translate multi-omics 

research into clinical applications. Precise computational 

techniques are needed to process, normalize, and analyze 

microbiomics datasets to support reproducible research into the 

role of microbiomes in health and the environment. 

Measuring the composition of a microbiome is addressed by 

amplicon-based or marker-gene sequencing approaches to 

perform a microbial census. The functional potential of a 

microbial community can be inferred indirectly by marker-gene 

surveys, or through direct observation of functional genes and 

pathways by whole-metagenome sequencing surveys. 

Measurements of functional activity in a microbiome can be 

derived through metabolomics, proteomics, and transcriptomics 
[3]. 

Amplicon sequencing of variable-length, hyper-variable 

regions of the 16S rRNA gene or the internal transcribed spacer 

regions (ITS) of rRNA operons allows assessment of microbiome 
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taxonomic composition in a single PCR amplification [4]. In 

particular, choice of 16S rRNA-targeted primers influences 

microbiome composition estimates, especially in prior samples 

that lacked enriching bias control. Both amplicon length and 

choice of ITS region shape community structure recovery. Use 

of variable-rich regions or super-primer strategies enhances 

bioinformatic usability but amplifies primer-specific recovery 

bias. Finally, incomplete 16S rRNA-containing genomes and 

tRNA-rich regions in some groups impede precise quantification 

of taxonomic units at certain levels. 

Metagenomic shotgun sequencing of environment origin 

nucleic acids enables un-biased analysis of taxonomical and 

functional genomic constituents. For assemblages comprising 

only one or a few organisms, efficient full-genome assembly 

permits taxonomic identification and functional-potential 

characterization. From nucleic-acid extraction to sequencing in 

less than six hours and total recovery of high-throughput 

sequencing generated data and clustered communities, a simple-

deduplication approach competes with premature and sample-

bias-propagating 16S rRNA gene-targeted strategies. Since 

shotgun-microbiome construction nor recovery steps guarantee 

assembly-continuity, metagenomic community data serve as 

operational taxonomic unit presence-absence tables, like 

amplicon-16S profiling. Nevertheless, relative-abundance 

unaffected by initial-microbiota complexity, origin exclusion, or 

cell-growth altering extraction methods still observes 

reproduction of previously claimed temporal and site-variation 

observations at phylogenetic and metagenomic-eubacteria 

resolution. 

Amplicon sequencing technology has played an essential role 

in profiling the composition of microbial communities and is thus 

a widely applied method for microbiome studies. The general 

principle of amplicon sequencing is to generate sequencing 
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libraries through the amplification of specific regions of interest 

via the polymerase chain reaction (PCR). For microbiome 

analysis, the most commonly targeted regions are portions of the 

16S ribosomal RNA (16S rRNA) gene for bacteria and archaea, 

the internal transcribed spacer (ITS) regions for fungi, and other 

specific loci for other microorganisms. Amplicon sequencing 

delivers a high level of accuracy for characterizing microbial 

community composition at the phylum and genus ranks. The 

chosen marker region clearly determines the maximum 

taxonomic resolution that can be achieved and different regions 

generate various coverage biases and taxonomic markers, which 

can lead to dissimilar community structures when identical 

samples are characterized. Extensive studies have validated 

amplification primers for different marker regions, improving 

taxonomic coverage and minimizing bias. The U.S. National 

Institute of Health has established a 16S rRNA gene sequencing 

protocol, with widely adopted primers to amplify a region of 

approximately 500 base pairs [5]. Specific protocols for 

eukaryotic ribosomal RNA and second-generation sequencing 

technologies have been developed, enabling the characterization 

of various microbiomes, including soil, rhizosphere, and plant 

samples [6]. A distinct aspect of amplicon sequencing lies in its 

filling-sequence capability, where a central region remains 

unblocked and elongation can proceed, allowing multiplexing 

with various barcodes and the generation of sequence data for the 

forward and reverse primers [7]. 

Profiling methods based on metagenomic shotgun 

sequencing collect nonspecific gene- or taxon-centric data 

without relying on amplification of target gene sequences. The 

functional composition of the healthy microbiome as well as 

shifts associated with various diseases, especially within the gut, 

are now approaching cross-sectional completeness. These data 

underscore the importance of sequencing depth, which should be 
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calibrated according to desired resolution at the functional as well 

as taxonomic physiotype level. Collectively, however, major 

shortfalls still need to be addressed ahead of microbiome-guided 

diagnostics or therapeutics, including link-from-function to 

health and disease states, extensive accuracy validation of 

functional predictions, improved representation of species from 

underrepresented phyla in reference collections, and integration 

of diverse other -omic data layers. 

Temporary sampling may also enable metagenomic shotgun 

sequencing of short, low-budget, or easily cultured investigations 

of portable devices such as eDNA cages or automated ultrasound 

systems. Nevertheless, outside these highly constrained 

conditions, the accumulation of public sequencing data currently 

far outweighs that of public raw short-read data, and the 

development of tailored portable devices with proven 

comparative classification performance has not yet kept pace. For 

amplicon sequence classification, accurate training and testing of 

machine-learning classifiers remains critically dependent on the 

incorporation of commercial Noise-Nextclade cloud support and 

detected bias or limitation zones. 

Of diverse microbial phyla present in the gut, only a small 

fraction is usually active, though activity levels vary among 

individuals. Functional characterizations solely based on 

metagenomic data may therefore be misleading. Capturing gene 

expression profiles through metatranscriptomic sequencing 

determines whether particular species and functions are actively 

expressed. Information on transcript levels further enables 

inferences about the relative activity of organisms and pathways 

within the community [8]. Integration with metagenomic, 

metaproteomic, and metabolomic datasets allows reconstruction 

of the complete microbiome activity biocycle, wherein gene-

centred analysis highlights transcripts governing degradation, 

turnover, or absorption of specific substrates; metabolomic data 
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indicates substrate supply; and metaproteomic observations 

provide complementary, verification-oriented support for 

genome-centric interpretations [9]. 

Proteomic and metabolomic data augments gene-centric 

activity inferences by providing a pathway-level view of 

microbiome functioning. Metaproteomics resolves the highly 

multifactorial taxonomic diversity of microbiomes but, due to 

high costs and other technical constraints, remains relatively 

niche. Metaproteomic-based profiling attempts have been 

attempted in marine ecosystems and associated with disease 

recovery transitions in biological wastewater treatment plants 

utilizing a diet shift to gluten-free food and reducing transplant-

associated diarrhea incidence. Such focused applications may 

become more common as methods are continuously refined and 

an increasing body of publicly available sequence databases of 

noncultured microorganisms accumulated. Integrative studies 

comparing existing metabolomic profiles with metaproteomic 

data may also help identify the specific bacterial activity in 

metabolic reprogramming. 

Third-generation sequencing methods and nanopore 

sequencing devices offer the unique ability to sequence nucleic 

acids in real time and generate ultra-long reads of hundreds of 

kilobases or even megabases that can completely span entire 

plasmids. The ultra-high temporal resolution offered by portable 

sequencers enables point-of-care microbiome profiling for 

various clinical and non-clinical applications. Such hold time 

resolution capability has the potential to provide relative 

quantification of rapidly growing bacterial pathogens in 

screening samples for wound infections and urinary tract 

infections at point-of-care. The success and deployment of these 

technologies, however, remain constrained by sequencing error 

rates, particularly with nanopore sequencing, potential 

amplification bias during library preparation, and the relevance 

of sequencing readout for clinical decision making. 
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As a conceptual extension of metagenomic shotgun 

sequencing, Hi-C-an approach originally designed for intact 

eukaryotic genomes-enables genome-resolved metagenomics to 

aggregate fragmented prokaryotic assemblies into genome bins 

by inferring proximity from, for example, unique read pairs and 

mate pairs that originate from the same genomic locus [10]. 

Metagenomic assemblies, therefore, can be linked spontaneously 

into genome bins through Hi-C or cross-platform technology 

combinations (e.g., PacBio long-read assemblies linked with Hi-

C). A linked assembly or binning scheme clarifies subsequent 

interpretation by delineating which loci coparticipate in the same 

biological cycle. Access to, or interpretation of, Hi-C data may 

benefit from referring to ‘Metagenomic shotgun sequencing’ and 

‘Hi-C and genome-resolved metagenomics’ when strategies 

aiming for multiple information layers are considered [1]. 

Technologies for single-cell genomics can likewise pinpoint 

biological activity in specific community members, yet highly 

targeted amplification schemes usually yield limited genomic or 

transcriptomic input per event, imposing throughput/cost trade-

offs on larger collections. Conveying single-cell approaches is 

enhanced by two-way cross-referencing with ‘Metagenomic 

shotgun sequencing’ and ‘Single-cell genomics’ to highlight 

similar target organisms or complementary interpretative 

architectures. 

All Hi-C experiments are based on the creation of large 

chimeric DNA molecules. Individual genomes are cross-linked 

to preserve their spatial organization. Genomic DNA is then 

enzymatically fragmented and biotinylated. Biotinylated ends 

from different DNA fragments are subsequently joined together, 

forming a mixture of endogenous chromatin molecules. A 

sequencing library is prepared and sequenced, and the resulting 

chimeric reads provide information about relative proximity 

between DNA loci. When the process is performed on bulk 
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microbial communities, the mixture consists predominantly of 

DNA from multiple organisms. The participating species can be 

identified, and the likelihood of interconnectedness between each 

set of two taxa can be quantified. This type of information is 

exploited in MetaHiC to cluster or bin contigs [11]. Clustering 

combines contigs into groups preferentially containing several 

pieces from the same organism, while binning assigns individual 

contigs to distinct taxa groups. The approach does not yield 

complete genomes but enables the accurate reconstruction of 

substantial portions of tens to hundreds of individual genomes 
[12]. Meta3C, a variant of Hi-C targeting only a few abundant 

species, allows complete genomes to be assembled from highly 

complex communities [13]. A major limitation of metagenome-

analysis approaches characterized by unconnected contigs is that 

two separately binned pieces may originate from the same 

genome, leading to misinterpretation of evolutionary and 

ecological processes. Various concepts related to community 

assembly, multifactorial analysis of community distance metrics, 

evolution of mobile genetic elements, community-wide 

phylogenetic trees, and metabolic networks depend on the 

presence of contig connectivity. These Hi-C methods solve the 

long-fragment problem addressed by other approaches, which 

generally output shorter contigs at more moderate coverage. 

Xenobiotic degradation, plant nourishment, and even 

pathogenesis are influenced by ecological interactions of 

anaerobic arginine-degrading bacteria in anaerobic wastewater 

treatment systems. Inactivated catabolism or microbe-microbe 

cross-feeding of aromatic amino acids impedes anammox. 

Environmental sciences and bioremediation strategies targeted at 

small deodorizers, paints, rubber, pharmaceuticals, personal-care 

products, or household products are consortia comprising 

hydrocarbon-degrading Bacillus, corynebacterium, cometabolic 

Rhodococcus and Gordonia, and aromatic-compound-attaining 
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Microbacterium. Microbiomes of synthetic-biodegradable 

polyesters characterized. Use of bioplastics and biodegradable 

plastics naturally derives from carbon-neutral alternative 

substrate or, more generally, nonpetroleum feedstock. The 

economical sustainability along with contamination of such a 

system where co-incorporated plastic-fixating bacteria [14] 

improves aerobic degradation of polylactic acid versus using a 

species amalgam without, can be a promising prospect. 

Emerging platforms for profiling microbiomes and 

ecosystems embrace several concepts, including community 

composition and gene function, through many promising 

investigational approaches. Nano- and third-generation 

sequencing technologies offer compelling advantages for 

microbiome and ecosystem profiling, including much longer read 

lengths and real-time data acquisition. Current applications 

encompass whole-community profiling in water and soil 

samples, targeted analysis of clinically relevant pathogens in 

human and food samples, portable epidemiological analyses for 

airborne SARS-CoV-2 data in public transportation, and early-

stage study of the oral microbiome. Numerous limitations 

remain, including limited depth and bioinformatic analysis 

capabilities, and concurrent validation with established platforms 

is essential for method and data interpretation. 

At the cutting-edge of sample handling and analysis, portable 

or point-of-care profiling technologies have received rising 

interest. Recent applications employ a wide range of sequencing 

technologies, including second-generation nanopore sequencing 

combined with portable personal computers to explore oral 

microbiomes and microbial links between electric vehicles and 

underground electrochemical environments. While the market 

for pack-sized benchtop sequencers has grown rapidly in diverse 

laboratories, read length and sequencing throughput remain 

paramount. Most applications rely exclusively on long-read 
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sequencing, on which extensive genomic and transcriptomic 

analyses have focused, and many established protocols remain 

fruitful solo endeavours [1]. 

Emerging nano- and third-generation sequencing platforms 

that offer long read lengths and continuous data acquisition open 

new opportunities for portable, point-of-care microbiome 

profiling. Third-generation sequencing platforms produce reads 

up to 20 kb long, facilitating assembly of repetitive regions and 

structural variation. These sequencers provide rapid, real-time 

data in a compact, easy-to-use format, critical for outbreak 

surveillance or ecological monitoring. Bioinformatics 

frameworks such as MinION2Metagenomics streamline analysis 

by translating raw signal data into fastq files for taxonomic and 

functional characterization [15]. Last-generation platforms 

integrate sequencing, amplification, and library preparation into 

a single disposable flow cell capable of on-device analysis and 

display]. 

Portable and point-of-care microbiome profiling. Current 

ultra-short and portable DNA sequencers present enticing 

opportunities for portable and point-of-care microbiome 

profiling. Potential case studies include human microbiome 

analysis and monitoring of environmental microbiomes in cases 

of predecessors to pandemics. The technique remains in its 

infancy and requires further validation before practical 

applications can be safely considered. 

Emerging third-generation sequencing technologies, such as 

those from Oxford Nanopore and PacBio, offer read lengths up 

to 100 kbp and the distinct prospect of real-time access to data. 

Although nanopore sequencing is currently associated with lower 

throughput and higher error rates than Illumina sequencing, a 

considerable number of study designs are compatible with a 

trade-off between immediate data access and other metrics [1, 16]. 
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Taxonomic classification refers to the computational 

assignment of observed sequence-based operational taxonomic 

units (OTUs), unsequenced reads, or metagenomic contigs 

(metagenome-resolved coverage) to biological entities at a 

specified taxonomic clade level [17]. Generally, classification 

aims to satisfy a specified relative accuracy criterion while 

optimizing for coverage and computational efficiency. 

Functional annotation denotes the assignment of observed 

sequence-based sequence features or metagenomic contigs to 

statistical models of putative biological functions, with a possible 

secondary goal of pathway inference. Comparative analysis 

refers to the derivation of statistically significant differences in 

taxonomic or functional profiles from two or more groups of 

community profiling samples, subsequently characterized by 

associated metadata [18]. Longitudinal analysis designates the 

extraction of statistically significant changes in taxonomic or 

functional profiles within the same community profiling sample 

over time. Data integration involves the combination of 

correlated measurements from distinct community profiling 

datasets acquired at the same time and environment or from 

different but temporally matched instruments. These 

considerations are closely related to the design of experiments 

and interpretation of results, which incorporate a wide variety of 

interdisciplinary factors. Despite the availability of data 

integration across omics layers, taxonomic classification remains 

the major enrichment and exploratory analysis complement for 

amplicon datasets, and cross-sectional metagenomics 

subsequently suggests gene-level functional insights about 

bacteria in subgingival plaque microbiomes without accessibility 

to direct metagenomic reads. 

Taxonomic classification is the assignment of sequences to 

taxonomic groups according to a reference database of similar 

sequences. Clade resolution extends classification by assigning 
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each group to a clade in a hierarchical phylogeny that may not 

correspond to the taxonomy of the reference database. 

PhyloRelief identifies taxa that distinguish different sets of 

metagenomic samples [19]. To overcome reliance on an external 

taxonomy, it applies phylogenetic relationships of the taxa 

contained in the reference database to group them into clades and 

ranks those clades according to their contribution to sample 

differentiation. 

Taxonomic classification of microbiome community profiles 

is frequently combined with functional annotation of the 

corresponding metagenomic samples. In this case, activity 

profiling focuses on metagenomic features, whereas pathway 

inference seeks to establish links between functional modules. 

Comprehensive comparative analyses-including longitudinal 

studies-are essential to reveal community dynamics associated 

with a given condition. These inferences can be enriched through 

integration of cross-omics data, such as multi-kingdom 

metagenomes and metatranscriptomes, metagenomes and 

metaproteomes, or metagenomes and metabolomes. The 

resulting views of community activity are complemented by 

complementary microbiome studies, including systematics, 

amplicon library profiling, and shotgun sequencing of purified 

genomes from single cells or contiguity-based linking of Hi-C 

clones from cultivated resources [1]. 

Functional gene annotation and metabolic pathway inference 

employ various bioinformatics approaches, each with unique 

strengths and limitations. Existing metabolic databases, which 

assign functional annotations to genes, provide a simple but 

imperfect means of inferring pathway-level functional potential 

across a community. More advanced methods, such as Kaiju and 

DIAMOND-based approaches, enable clade-specific functional 

annotation, while functional network construction scaffolds 

subsequent activity-driven analyses. Gene set enrichment 
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analysis and pathway activity score calculation provide 

inferential shortcuts based on known biological activity across 

the metabolites represented within a profile. 

In addition to kingdom-level detection of eukaryotic 

sequences, clade-specific annotation approaches add ecological 

value, especially where cryptic Eukaryota are present. Despite its 

biological complexity, the functional properties of the eukaryotic 

community remain less actively interrogated than their 

prokaryotic counterparts. Metabolite profiles have been applied 

to such communities, but derived pathways often represent basic 

building blocks of life. For investigations where the metabolic 

profiles of Fungi, Animalia, Archaea, or other kingdoms are key, 

a clade-resolved activity-framework combining multiple -omic 

layers would provide superior interpretive resolution. Attributes 

essential for comparative or longitudinal analysis of 

metagenomes and their functional signatures across 

environmental or health-related samples are also vital for 

evaluating temporal shifts during targeted time-series studies. 

The inferred function of integrated-deep sequencing-based 

profiles can be strengthened through deliberate connection with 

periodic -omic reports. 

Compiling microbiome data into regulatory frameworks that 

enable comparative and longitudinal analyses further enhances 

their interpretive value [12]. Taxonomic classification-the 

assignment of each sequence to a lineage based on similarity to 

reference databases-provides the foundation for such analyses. 

Phylogenomics links sequence information to a structured 

reference tree. Microbiome profiling generally introduces 

sufficient diversity that metagenomic assemblies reliably recover 

core isotopic units from an emerging set of Universal Common 

Ancestors [1]. Sequence similarity within these January 18, 2021 

83 Assemblers 78 frameworks helps establish ignorance of 

sequencing condition and preserves core insights even when 



 

Page | 26 

taxonomies switch or evolve. Several systems now enable core 

facility access to phylogenomics, providing a viable technical 

option for microbiome datasets. 

Another widely used facility targets functional 

characterization, assigning sequences to gene families based on 

their sequence and motif similarity. This approach, however, can 

obscure biological specificity because gene families are 

generally broader than the equivalent lineage measures already 

deployed. Instead, statistics on the component building blocks of 

assembly and their shared compositional patterns within 

individual contigs or fragments-abundance stratified by building-

block oligo-length or other widely varied building-block plug-in 

token frequencies-better capture the sameness of isolative 

specification for subsequent Rousseau or other ulterior 

exponential growth modelling. Supporting data on biomass per 

strand conversion keeps metagenomic calculation simplicity 

while directly linking back to building block oligo stepping 

lengths and their size-discrepant active-rich group generators, 

ultimately probing a remaining proxy of equivalent isolation 

beyond banded whole-probe embedding for cross-core inter-

system insights. 

Simultaneous profiling of multiple biological layers presents 

opportunities to decipher complex community interactions, yet 

straightforward methods for integrating info across diverse -

omics types and longitudinal datasets remain scarce. Popular 

approaches incorporate metagenomic and metatranscriptomic 

data. Transcript/gene ratios indicate transcriptional activation or 

repression of particular genes; a metagenomic database assists 

metaproteomic protein identification; and gene 

abundance/proteomic activity connections emerge when 

comparing shotgun metagenomics with metaproteomics. Foxtail 

millet rhizospheric soil and microbial communities tagged with 

metagenomics plus 16S rRNA amplicon sequencing enable co-
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variation exploration of microbial functions and 93 

environmental factors [20]. 

Integrating multi-omics data across different biological 

layers helps characterize a microbiome’s collective function and 

metabolic activity. Such integration is crucial for diseases-e.g., 

Type 1 diabetes, diabetes, or inflammatory bowel disease-that 

exhibit microbiome alterations unlikely linked to single bacterial 

species or individual molecules. Because 16S rRNA/ITS 

amplicon sequencing and shotgun metagenomics continue 

driving microbiome analyses, assemblers and pipelines tailored 

to long reads, multi-omics compatibility, and specific -omics 

combinations are in demand [21]. 

Human health is tightly integrated with microbiome 

composition and status. The gut microbiome of individuals 

suffering from inflammatory bowel disease, irritable bowel 

syndrome, or obesity exhibits notable deviations from healthy 

counterparts. The oral microbiome serves as a reliable indicator 

for periodontal disease and certain systemic diseases. On the 

skin, elevated allergen-specific immunoglobulin E and disease-

indicative inflammatory cytokines correlate with eczema-

associated communities [1]. Specimens of the gut, oral cavity, and 

skin deliver sufficient microbial DNA for various profiling 

approaches. 

Profiling methods have unique strengths and weaknesses for 

health-related diagnostics and therapeutics. Amplicon 

sequencing, a cost-effective option with limited taxonomic 

resolution, proves suitable for the gut microbiome; oral and skin-

site profiling require shotgun metagenomic sequencing or 

higher-precision approaches. Shotgun and full-length 16S rRNA 

sequencing are deployable across all body sites; the former is 

favored when functional insights are beneficial or for systems 

exhibiting substantial strain or genus diversity. Combinations of 
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amplicon and shotgun sequencing leverage the former’s low cost 

with the latter’s functional characterization and strain-resolution 

potential. To develop microbiome-guided diagnostics and 

therapeutic microbial applications, accelerated R&D cycles 

demand integrated amplicon sequencing and shotgun 

metagenomics complemented by cultivability and resistance 

profiling. 

The gut, however, is the best-studied human microbiome, 

changing over periods of days, childhood, and aging and in 

response to diet or illness. It is modified in unknown ways by 

travel, chemical additives, and antibiotics [22]. Although no two 

people share identical microbiota and microbiomes vary between 

host species, studies of wild-type vertebrates such as mice and 

zebrafish have identified similarities in microbiotic function and 

host interactions. Germ-free organisms have elucidated the 

microbiota’s roles in maturation of the immune system and, 

surprisingly, anatomical development of the intestine. 

Gnotobiotic systems in which an organism’s natural microbiota 

are replaced with the human analog are also being used to study 

the phenotypic consequences of controlled perturbations. High-

profile demonstrations of this technique include an ongoing 

investigation of the microbiome in obesity. 

Growing interest in the microbiome and its association with 

human health and disease has resulted in characterization of the 

gut, oral, and skin microbiomes across numerous diseases, 

enabling microbiome-guided therapeutics and diagnostics. 

Example disease states include irritable bowel syndrome or 

Crohn’s disease, where fecal microbiome transplant using 

metabolites as functional proxies shows therapeutic effects; 

periodontitis, which can be diagnosed based on the oral 

microbiome; and skin diseases like atopic dermatitis and 

psoriasis, which display dysbiosis patterns. Guided by these 

associations, amplicon sequencing mainly targeting 16S rRNA 
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and general function primers has been the dominant method due 

to its cost-efficiency and applicability in population-scale 

studies. However, detection of these associations requires high 

sequencing depth to discover rare taxa, and the limited resolution 

of the 16S rRNA marker leads to false-positive signals. As a 

result, long-read metagenomic shotgun sequencing is being 

applied to disease cohorts and proposed as the standard for 

microbiome-characteristic studies. 

Recent advances in culturomics, machine-learning-based 

classifiers, and standardization approaches are further improving 

the resolution and reproducibility of microbiome diagnostics. 

With these developments, the gut, oral, and skin microbiomes are 

showing connections to medicine, forensic science, nutrition, and 

personalized medicine, and the resulting products are starting to 

reach the consumer market. 

Agricultural microbiomes include those associated with soil, 

plants, and animals. Seed and root-associated microbiomes are of 

special interest because they affect plant health and influence the 

microbiome assembly of tissues further downstream [17]. 

Microbiome monitoring of wastewater treatment processes and 

ecosystem surveillances can inform decision-makers and guide 

public policies on water safety, pollution, and ecosystem health 
[23]. Soil contamination and the loss of soil biodiversity through 

erosion compromise nutrient cycling and crop yields. Monitoring 

microbial community diversity helps identify best practices for 

soil maintenance. 

Plants form associations with diverse assemblages of 

microorganisms that affect growth, nutrient acquisition, and 

resistance to biotic and abiotic stress. A large proportion of 

rhizosphere-associated bacteria neatly establish microscale 

biofilms on root surfaces, which contain active colonies. In roots, 

endophytic communities thrive in tissues such as epidermis and 



 

Page | 30 

hairs, while other locations remain inaccessible due to highly 

impermeable barriers. Disentangling individual metabolic 

contributions in plant-associated microbiome species is difficult 

but crucial due to often subtle phenotype effects and multi-

species dependencies. As single-cell transcriptomics enables 

large-scale genome-wide exploration of individual microbial 

functions in plants, the bottleneck remains studying complex 

whole-community transcriptomes that obscure species-level 

functions [24]. 

Biota regulate essential ecosystem services in soil. Changes 

in these processes affect terrestrial C stores and aggravate climate 

change. Nutrient availability and plant growth are crucial for 

sustainable agriculture worldwide. Biogeochemical cycles of C, 

N, P, K, S, and Fe dominate nutrient saturation in soils. Soil 

microbiomes participating in these cycles span diverse genera 

and species that remain poorly understood across multiple 

systems. Tracking phylogeny, composition, and structure in soil 

microbiomes is vital for managing ecosystem health and 

agricultural productivity. Temporal variations in soil 

microbiomes remain understudied, impeding understanding of 

their public health impact and isotope technology for ecosystem-

wide nutrient cycles at species resolution. After experimental 

separation of microbial fractions and nano-enrichment of 

genomes, high-throughput sequencing characterizes plant-

associated organisms and explores direct roles in mineral-

weathering and gas-fluxes across soil microbiomes [25]. 

Historically, microbial parameters have been used to monitor 

environmental pollution since the 1980s, focusing initially on 

drinking water quality. These early frameworks were rooted in 

the fact that aquatic ecosystems of concern were generally 

subject to unprocessed faecal discharges or uncontrolled 

effluents from large wastewater treatment plants (WWTPs). In 

the intervening decades, specific bioassays based on the 
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physicochemical changes caused by one or multiple toxic 

chemicals, along with whole-cell biosensor devices employing 

living organisms for biological anal - yte detection, have become 

available. Bacteriophages and viruses have also been moved into 

the spotlight as highly appealing proxies for wastewater tracking 

and control. Detection methodologies for enteric pathogens have 

evolved to increasingly sensitive nucleic-acid-based methods, 

primarily quantitative PCR [26]. 

Nonetheless, these methodologies suffer from limitations that 

hinder the identification of sources and the assessment of 

pollution state. False positives may arise from the persistence of 

non-viable cells or naked DNA in water samples. Viable but non-

culturable states may not be accounted for. Meanwhile, constant 

exposure to a major stressor can drive the loss of essential 

pathogenic traits, and toxic organic pollutants have been shown 

to accelerate plasmid loss. One of the main challenges is 

therefore the development and implementation of sensitive in-

field monitoring tools for pollutant impact and sublethal effects. 

Within eco-toxicology, much of the methodological innovation 

has focused on advanced molecular frameworks-particularly 

those that fill the gaps left by classical microbial techniques-

designed to clarify the principal drivers and pressures acting on 

aquatic ecosystems [27]. 

Technical considerations in microbiome profiling center on 

three factors: sequencing depth, sequencing cost, and desired 

resolution. The deeper the sampling, the more comprehensive the 

coverage of both abundant and rare taxa [1]. On the practical side, 

strategies exist that make shallow profiling viable when the 

budget does not allow extensive community surveys. This is 

especially true in environments in which only a fraction of the 

present taxa is expected to be in the samples. In such cases, the 

cost of sequencing can be kept low while still providing content-

rich, informative community coverage. Sequences illuminating 



 

Page | 32 

the relevant community structure can return larger insights than 

an ill-planned or poorly designed high-coverage survey. 

Microbiome profiling is characterised by practical trade-offs 

between sequencing depth, overage, cost and information 

content. Microbiome studies typically contain many samples, 

each of which can be characterised by low-cost, low-depth 

shotgun sequencing at ~ 101-105 reads per sample. Lower 

sequencing depth does not necessarily entail lower information 

content; at full width, the information content of shallow shotgun 

metagenomics studied at ~ 103 reads per sample ends to be 

greater than that of deep amplicon sequencing. Cost-effective 

amplification-free and primer-free approaches to mapping the 

microbiome are expected to become increasingly feasible to 

complement amplification-based strategies. 

Sample numbers and sequencing depth strongly determine 

cost per sample. For microbially dominated samples, deep single 

genome and multi-genome shotgun sequencing of ~ 105-107 3 -

HTs or < 104 3 -HTs are typically applied, respectively, to obtain 

many large, isolated genomes and maximise information [28]. 107 

whole-genome shotgun reads provide about the same 

information as < 106 metagenomics 2 -HTs. Similar 

considerations also apply to metatranscriptomics and when data 

on proteomics or metabolites can directly address microbiome 

questions. 

The microbiome is the collective assemblage of 

microorganisms in a defined environment, particularly the 

human body [29]. Characterisation of an individual’s microbiome 

raises privacy concerns because such information has the 

potential to reveal sensitive data about the individual. 

Microbiome information may serve to further elucidate an 

individual’s susceptibility and predisposition to disease, linking 

such information with factors like obesity that are already well-
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studied in the field of human genomics. As many diseases have 

a clear microbiome signature, like inflammatory bowel disease, 

microbiome measurements could also inform on a patient’s 

future health trajectory. The concern is amplified by the fact that, 

alone, information concerning an individual’s genetic makeup 

does not allow precise and comprehensive estimation of a 

person’s life expectancy or likely future health conditions. 

Microbiome-based information, on the other hand, especially 

when merged with genomic data, could lead to even more 

informed and possibly harmful insights about factors such as 

socioeconomic status and exposure to certain geographical areas 

and countries. Such data could lead to a more granular and even 

discriminatory understanding of a person’s microbiome; in some 

societies, predictions about one’s caste or class could be made 

based on the information potentially contained in microbiome 

analysis. A further level of complexity accompanies the domain 

of participatory research and citizen-science projects. The public 

may be willing to participate in such frameworks, willing to 

contribute to art, science, or other realms of knowledge. But there 

are still challenges: individuals may cede control over their data 

but remain highly concerned about how it is to be used 

subsequently [30]. Finally, there are still pressing issues regarding 

equity. Microbiome research and understanding has advanced 

rapidly in developed parts of the world without engaging directly 

with work conducted elsewhere. Microbes shape human health 

and human health shapes microbial evolution. Consequently, 

research conducted in a global context cannot be concerned 

solely with one region. To aid in sustaining the necessary 

equitable flow of funding between regions, projects need not be 

exclusively urban-centric; smaller communities can also form 

rich veins of scientific study and discovery, permitting a “many-

to-many” approach to research strategies. Highly localised 

efforts with several active research connections can therefore 
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facilitate patterns of outreach and collaboration across 

increasingly broad networks. To engage on a wide scale with 

entirely different ecosystems, data-sharing protocols remain 

essential. Maintaining respectful values around the flow of 

information - whether scientific, political, social, or cultural - can 

nurture and safeguard the multifaceted process of building 

competency and understanding. 

Despite widespread interest in microbiome research, 

reproducibility remains a critical issue in sequencing studies. 

Disparities in the taxonomic or functional profiles of nominally 

identical samples can emerge from even minor variations in 

preparation or sequencing protocols [1]. To address these 

challenges, it is essential to systematically document input 

material properties, wet-bench steps, sequencing methods, and 

bioinformatics analyses. Control reagents, such as mock 

communities, enable labs to characterize protocol performance 

and monitor consistency throughout the workflow [31]. 

Community profiling thus reflects shared technical and ethical 

considerations in biotechnology, where data privacy and 

equitable access must accompany scientific advancement. 

Microbiome profiling continues to evolve at a rapid pace, and 

several core themes emerge from the progress to date. First, the 

spectrum of available technologies and methods has matured 

greatly, addressing the desiderata identified in recent surveys [1] 

and meeting specific needs in response to emerging biological 

questions. Second, the integration of longitudinal and cross-

omics datasets is gaining traction and increasingly informing 

microbiome studies, while ongoing efforts to establish clearer 

standards and protocols will continue to enhance comparability 

and reproducibility [17]. Third, tomorrow’s microbiome 

innovation will follow the trajectory of today’s research, 

concentrating on more elaborate applications in environmental 

monitoring, wastewater surveillance, and agriculture, targeting 
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both fundamental understanding and preventive or therapeutic 

options. 

The transition from discovery-driven to implementation-

oriented microbiome studies entails a fresh examination of 

technical and ethical considerations. As the range and 

sophistication of profiling technologies broaden, careful 

attention to privacy, consent, and equitable access will help build 

and sustain public trust, while standardization of procedures and 

documentation will facilitate responsible stewardship and 

dissemination of information. Throughout this international 

effort, the microcosm of the microbiome remains a constant 

source of wonder, reshaping planets, transforming ecosystems, 

and influencing processes and evolution on scales far beyond 

what any individual species can accomplish. 

Metagenomics and metatranscriptomics 

Metagenomics enables a comprehensive analysis of all 

microbial DNA present within a given sample, providing a broad 

and detailed view of the various constituents, communities, and 

functional potential of a complex microbiome. Similar insights 

can be gleaned from metatranscriptomics, which specifically 

focuses on the diverse RNA repertoire. Both of these cutting-

edge techniques represent immensely powerful tools for 

understanding the intricate influence of the microbiome on 

overall health and for feeding advanced predictive models aimed 

at diagnosing or anticipating infections effectively. Combining 

the insights gained from these methodologies could lead to 

groundbreaking advancements in microbiome research and its 

applications in healthcare [35].  

Multi-omics integration 

Integrating data from multiple omics technologies, including 

genomics, transcriptomics, proteomics, and metabolomics, offers 

a much more comprehensive and nuanced understanding of 
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overall biological states. This integration is crucial as it enhances 

the interpretation of host-microbiome interactions, leading to 

insights that are not possible when examining any single layer of 

biological information alone. Precision microbiome approaches, 

therefore, necessitate a sophisticated data fusion process that 

harmonizes diverse molecular profiles from these omics layers, 

creating a more complete picture of biological systems. For 

instance, a study conducted by Heintz-Buschart et al. explored 

patients suffering from type 1 diabetes utilizing a combination of 

metagenomics, metatranscriptomics, and metaproteomics 

techniques. Their findings from metagenomic sequencing, 

interestingly, showed that there were no significant shifts found 

in the microbial composition following the onset of the disease. 

However, the transcriptomic analyses conducted as part of this 

comprehensive study revealed noteworthy insights, specifically 

an enrichment of differentially abundant transcripts during this 

condition. These findings underscore the importance of 

integrating multiple omics technologies to capture the 

complexities of biological responses accurately. Similar guiding 

principles have shaped additional research efforts that integrate 

recoverable gut microbiome functions with various other 

modalities, aiming to model intricate multi-omics association 

patterns effectively. More broadly, machine-learning methods 

have been increasingly applied to both evaluate different multi-

omics data integration techniques and develop cohesive 

strategies that explicitly incorporate biological knowledge, thus 

facilitating richer analyses of complex biological systems [35, 36, 

37].  
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Chapter - 5 

AI in Infectious Disease Diagnostics 

 

 

Machine learning vs deep learning approaches 

Machine Learning and deep learning are prevalent 

methodologies in data analytics and artificial intelligence 

research. While the distinction between these two approaches is 

often blurred, understanding their differences is critical for 

selecting the appropriate modeling technique. In the fields of 

pathogen identification, machine Learning and deep learning 

methods exhibit distinct differences regarding the quantity and 

nature of training data required, complexities involved in model 

interpretation, and the variety of microbiome data signals 

leveraged. Accordingly, the most suitable approach to employ 

depends on the specifics of the acquisition process and the 

characteristics of the microbiome features involved [38]. 

In the domain of microbiome-based diagnostic systems, 

pathogen identification often focuses on the species or strain of 

the infectious agent present in a biological specimen; the 

likelihood of specific resistance genes; or both. These outputs can 

be predicted from a range of dataset types, including sequence-

based, Biosensor, and gene-resistome observations [36]. The data 

collected through these methods can support either machine 

Learning or deep learning frameworks, depending on the 

intended feature set and temporal constraints. For example, 

biosensor datasets generally yield signals that are more amenable 

to machine Learning methods, while the higher dimensionality of 

extracted features from genomes and resistomes linked to 
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metagenomics or gene-resistome datasets is more suited to deep 

learning approaches. Moreover, algorithmic intricacies 

associated with employing deep learning necessitate larger 

sample sizes for effective training, rendering machine learning 

the favored option when the data acquisition timeline is 

condensed [39, 40, 41, 42]. 

Predictive modeling for pathogen identification 

The human microbiome serves as an unexplored reservoir of 

information to predict microbiome-dependent pathogen 

infections and guide antibiotic selection. Recent work has 

demonstrated that infectious diseases alter the composition of 

microbiome communities. As such, microbiome sequencing data 

has the potential to inform pathogen detection, knowledge that 

can be efficiently incorporated into predictive models. The 

targeted output of these models includes species, strain, and 

antibiotic-resistance predictions, with analyzable features 

derived from metagenomic DNA sequencing and other 

unintrusive biosensors capable of quantifying metabolites, 

volatile compounds, and other by-products associated with 

human microbiome activities [39] By accelerating the 

identification of infectious pathogens, such models have the 

potential to inform and personalize treatment and improve patient 

outcomes. 

Specifically, real-time monitoring of microbiome 

compositions through various sensors can facilitate the timely 

detection of community shifts brought on by pathogen-host 

interactions. Target species and specific interaction pairs have 

been linked to certain conditions, ranging from Clostridium 

difficile transmission and urinary tract infections (UTIs) to sepsis 
[43] Classifying these interactions allows models to tackle 

pathogen identification at the patient level and to evaluate 

infection risk on the basis of microbiome data along with 
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spatiotemporal movement patterns. By combining these diverse 

predictive signals with data streams that cover pathogen spread 

through microbial, waterborne, and fomitic routes, a 

comprehensive system for infection monitoring emerges. 

AI in outbreak detection and surveillance 

Machine learning applications for infectious disease testing 

showcase healthcare disruptions and include outbreak detection 

and proactive surveillance. Healthcare records, demographic 

information, environmental data on humidity, temperature, 

precipitation, wind speed, and population density fuel forecasting 

models [9]. 

AI-based early warning systems are continuously 

scrutinizing vast amounts of data sourced from various online 

health portals, advanced environmental sensors, and 

sophisticated flow cytometers to identify potentially alarming 

microbial infection patterns that could pose serious risks. A 

stand-alone item is expertly connected to local and broader 

infectious disease reporting databases that effectively follow 

targeted pathogens of interest that merit close attention. 

Microbiological count databases meticulously track species 

associations, relevant modification timelines, and broader health 

screening links that are instrumental in assessing public health. 

Such advanced systems facilitate prompt and thorough public 

health investigations, which trigger essential biotechnological 

diagnostics that prioritize forthcoming species of concern that 

could impact community health [44, 45, 46, 47].  
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Chapter - 6 

Integrating AI with Microbiome Data 

 

 

Data preprocessing and normalization 

Scaling and transformation serve as alternatives to rarefying 
[48]. Scaling adjusts the data relative to a reference sample, using 

approaches such as total sum, trimmed mean, geometric mean, 

upper quartile, or data-driven threshold. Scaling deals with 

sparsity and is compatible with most statistical methods, yet it 

does not fully resolve compositional data challenges. 

Transformation replaces the original counts with normalized 

ones, and various methods, including additive, centered, and 

isometric log-ratio transformations, exist for microbiome data. 

Transformation does not reduce sample size but can complicate 

the estimation of diversity, feature selection, or correlation 

between samples when precision remains constrained. Again, 

zero counts pose challenges during transformation, and 

employing pseudo-counts or imputation has advantages and 

limitations. The addition of a pseudo-count can inflate low-

abundance features, while imputation can induce spurious 

correlations among zeros [38]. 

Feature selection and dimensionality reduction 

Constitute fundamental preparatory steps in Microbiome-AI 

fusion, applicable to various microbiome data types. While large 

datasets can provide a plethora of features, many of these are 

irrelevant or excessively noisy for supervised-machine-learning 

models such as those aimed at predicting infections. Reducing 

the feature space to focus on the most relevant signals is thus 
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essential prior to the automatic identification of informative 

patterns. Moreover, maintaining biological interpretability 

during feature-reduction procedures is crucial to ensure that the 

selected features not only aid prediction but also support the 

diagnosis of infection routes and inform subsequent clinical 

decisions. 

Work on multidimensional feature reduction specifically 

tailored to microbiome data is limited. Studies employing 

standard dimensionality-reduction techniques, such as PCA and 

t-SNE, often disregard the unique biological characteristics of the 

datasets and may yield results that remain difficult to interpret 

from a microbiological perspective (ref: 977bbbce-7aec-4a4b-

8390-6eb346ea2b06). Adopting well-targeted strategies for 

feature selection and dimensionality reduction, thus combining 

signal concentration with biological relevance, enhances the 

utility of Microbiome-AI applications. The need to tackle both 

aspects simultaneously arises from the distinct procedures 

involved in the two activities and the site-specific nature of the 

signals available for infection prediction (ref: 40da36a5-7323-

4478-b408-b99d424554c9) [49, 50, 51].  

Challenges in microbiome-AI fusion 

Artificial intelligence (AI) holds promise for enhancing 

medical diagnostics-a particular focus in digital healthcare-and 

improving national disease outbreak surveillance. In parallel, 

precision medicine is evolving from the broader establishment of 

clinical pathways, protocols, and guidelines into smaller units of 

therapy from populations into varied and individualized 

treatment plans. Within this context, precision microbiome 

medicine merges microbiome data into diagnostics and treatment 

options; a particularly tractable challenge within the broader 

precision medicine landscape. Holistic models of infectious 

disease have primarily characterized the interactions of pathogen, 
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host, and environment. However, efforts to build models of the 

clinical microbiome and its relationship to infectious disease are 

now evolving [9]. 
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Chapter - 7 

Real-Time Pathogen Detection and Monitoring 

 

 

AI-based biosensors 

A broad range of sensing modalities supports biosensor-

based diagnostics, facilitating point-of-care (POC) 

implementation [9]. AI-especially machine learning-

fundamentally reshapes PIC epidemiology, equipping experts 

with new capabilities for health monitoring, pathogen detection, 

and infection prediction [52]. When combined with conventional 

resources and numerical data, biosensor signals enhance 

detection and prevention of infection risks. The demand for 

biosensors rises with global efforts in epidemic monitoring and 

COVID-19-related precautions. Alongside conventional 

monitoring and detection technologies, biosensors serve to 

effectively validate both local and global health transmissions. 

Further PI-related sensors lend vital support to 

multidisciplinary approaches that encompass a wide array of 

disciplines, including microbial, metabolic, and lifestyle 

monitoring. These advanced technologies enable an 

unprecedented level of precision in data gathering. The 

accessibility of such accurate, longitudinal, and lifestyle-related 

data collection holds immense potential to significantly enhance 

the existing pandemic model by capturing critical insights that 

were previously underestimated or overlooked in the context of 

PI transmissions. Various aspects of monitoring signals arise 

from conventional detection methods, early identification of 

outbreaks, comprehensive infection risk assessments, 
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evaluations of nosocomial infections, occasional infection sites, 

and precise forecasts regarding the progression of infections over 

time. This comprehensive data collection approach not only aids 

in understanding current infection trends but also lays the 

groundwork for proactive responses in the domain of public 

health management and epidemiology. [44, 53, 54] 

Wearable diagnostics 

Wearable devices facilitate longitudinal and nonintrusive 

monitoring of various biophysical markers, promoting adherence 

and integration into clinical workflows [55]. They are particularly 

well suited to monitoring at-risk populations, such as patients on 

antibiotic treatment or those exposed to infectious outbreaks, 

when early detection of secondary nosocomial infections or 

pathogen carriage is crucial [56]. Microbiome signals that indicate 

increased risk of infection can therefore be coupled with smart 

biosensors to implement a comprehensive infectious disease 

management workflow. 

Point-of-care tools using microbiome signals 

Appropriately, microbiome signals are particularly 

compelling for point-of-care (POC) diagnostics, where simple 

binary decisions based on low-complexity input types must be 

made rapidly, sometimes even without the assistance of a 

laboratory specialist [55]. When used in conjunction with 

externally complemented sensing technologies, these signals can 

inform immediate decisions about antibiotic use, microbiome-

modulating therapies, and therapeutic resistance-choices that 

otherwise require time-consuming laboratory intervention. The 

target specifications for such POC diagnostics in infectious 

disease agreements with established studies on urgency and 

decision complexity [57]. POC diagnostics deal with clear 

pathogen identification and resistance forecasting from intact 

biological samples to components such as circulating DNA or 
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RNA shed by active pathogens remain viable options. By 

utilizing AI-based models, the corresponding data support a 

higher-frequency early-warning system that might prevent the 

onset of infection or act preemptively following environmental 

exposure. 
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Chapter - 8 

Personalized Antimicrobial Therapies 

 

 

Microbiome-informed antibiotic selection 

Precision microbiome medicine offers a paradigm shift from 

conventional one-size-fits-all approaches by tailoring diagnostics 

and therapeutics to an individual’s unique microbial 

communities and host characteristics. Consequently, 

microbiome-informed models for pathogen and resistance 

prediction hold considerable promise for enhancing infectious 

disease diagnostics. Specifically, advanced analytics applied to 

multi-omics and biosensor data can pinpoint pathogens, forecast 

resistances, and identify target pathogens and mechanism-based 

therapies. However, regions such as low- and middle-income 

countries (LMICs), where such intricate data may not be readily 

available, risk being sidelined from the benefits of microbiome 

intelligence. Accordingly, models that extract microbiome 

signatures from routine culture data, thus enabling large-scale 

monitoring of microbial resistance, could enhance diagnostic 

equality across diverse geographies and enable precision 

guidance toward effective treatments. 

AI plays a crucial and pivotal role in significantly enriching 

and enhancing antibiotic selection processes. Advanced models 

that are meticulously trained on datasets encompassing 

metagenomics, resistome, and comprehensive microbiota data 

have the capability to accurately predict the minimum inhibitory 

concentration (MIC) ranges. These models can also identify the 

likely resistance determinants for various key infection 
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pathogens. Moreover, when it comes to the analysis of 

microbiota alone, such assessments can effectively steer 

proposals for targeted therapy and inform the selections of fecal 

microbiota transplant (FMT) donors. This is achieved by 

identifying patients who exhibit significant microbial deviations 

prior to their transplants, leading to better therapeutic outcomes 

and personalized treatment strategies [9, 58, 59, 60].  

AI for predicting resistance profiles 

The widespread utilization of antibiotics has been plagued by 

the emergence of resistance. The accurate distinction between 

susceptible and resistant microorganisms is paramount for 

effective antibiotic selection and the reduction of resistance 

propagation. The increasing sophistication of next-generation 

sequencing technologies (NGS) has enabled the determination of 

the genomic features of pathogens, paving the way for the 

selection of antibiotics on a genomic basis. Furthermore, 

machine-learning models can predict the likelihood of 

antimicrobial resistance directly from the metagenomic 

sequencing of clinical samples. These network-based models 

have made it possible to generate a comprehensive overview of 

the resistome, thereby offering decision-support capabilities for 

the sustainable application of antibiotics. 

Microbial metabolites play a pivotal role in the modulation of 

antibiotic activity and the prediction of pharmacological effects. 

Machine-learning algorithms can forecast the metabolization of 

drugs through the gut microbiota from their structural 

characteristics. The generated knowledge on pharmacokinetic 

profiles holds the potential for preclinical screening of drug 

candidates, ultimately minimizing the risk of late-stage failures 

associated with in vivo studies. Similarly, ongoing research 

endeavors aim to elucidate the association of broad-spectrum 

antibiotics with the microbiome to guide clinically pertinent 

therapeutic decisions [9]. 
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Fecal microbiota transplantation (FMT) and probiotics 

Microbiota-based interventions seek to restore healthy 

microbiota composition and function. The World Health 

Organization has listed fecal microbiota transplantation (FMT) 

as an essential therapy, and a practical diagnostic framework 

exists for identifying candidates. Models trained with 16S 

amplicon sequencing data indicate a preventive effect against 

Clostridium difficile. Experimental and clinical studies 

demonstrate that modeling the microbiota community enables 

AI-assisted donor-recipient matching; patterns of predicted 

donor impact correlate with clinical success. 

Probiotics, prebiotics, and synbiotics constitute additional 

therapeutic avenues. When the microbiota is a target and specific 

candidates are under consideration, a framework for scrutinizing 

their suitability according to patient context has been articulated. 

AI-enhanced matching for pivotal microbiota-based treatments is 

an emerging field where diagnostic input can refine strategy 

development and increase the probability of favorable outcomes. 
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Chapter - 9 

AI-Enhanced Drug Discovery Targeting the 

Microbiome 

 

 

Screening of microbiota-based therapeutics 

Microbiota-based therapeutics have emerged as a promising 

strategy to combat infections and restore microbiome balance. 

The performance of microbiota-based therapeutics, such as fecal 

microbiota transplantation (FMT) or dietary supplements, can 

vary considerably among individuals. This variability often 

hinders the identification of optimal therapeutic options or 

candidate donors. A systematic assessment of microbial and host 

markers could facilitate the selection of microbiota-modulating 

strategies in precision medicine frameworks. 

Microbiome parameters influencing the efficacy of 

microbiota-targeting treatments can be predicted using artificial 

intelligence (AI) methods. To address the clinical need for 

personalized microbiota modulation recommendations, machine 

learning (ML) tools for predicting treatment outcome were 

developed. These models leverage diverse pre- and post-

treatment datasets and capture the effects of dietary changes, 

probiotics, and prebiotics on the microbiome [61]. 

Predicting microbial drug metabolism 

The human gut microbiome harbors a vast array of metabolic 

enzymes capable of modulating human physiology and the 

metabolism of drug molecules. Microbiome-mediated 

modification of drug metabolism can substantially alter 



 

Page | 50 

pharmacokinetics and pharmacodynamics, leading to 

interindividual variations in therapeutic outcomes, adverse drug 

reactions, and even drug efficacy. It has been demonstrated 

experimentally that the biotransformation of hundreds of drugs 

could be catalyzed by the human gut microbiome. Nevertheless, 

a rapid in silico approach for accurately predicting the 

microbiome-enzyme-drug relationships before in vitro studies 

remains important, especially for drug development pipelines 

that require fast action [62]. The microbiome-ecosystem status 

prior to exposure to a drug can also be predicted, as the drug itself 

may alter the metabolism of other molecules present in the 

ecosystem [63]. A tool called DrugBug-2 has been developed, 

which employs a machine learning framework trained on a large 

experimental dataset of 475 drugs that have been biotransformed 

by the gut microbiota and their associated microbiome-encoded 

metabolic enzymes. 

AI-guided microbiome modulation strategies 

Design interventions-dietary changes, prebiotics, or 

probiotics-with simultaneous tracking of pathogen presence or 

related signals, to enhance effectiveness and suggest adjustments 

as conditions evolve [9]. Optimization employs formalisms such 

as response surface methods, combining preliminary 

experiments with feedback-control algorithms. Systems biology 

models extract community-scaled interactions, enabling trials 

with multiple microbes, to gauge interventions targeting 

frequently overrepresented taxa, or multi-species replacements 

that quell competition or foster beneficent partners. AI 

interfacing describes structure-activity relationships across food 

compounds, prebiotics, and probiotics, aiding therapeutic 

selections for specific objectives. 
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Chapter - 10 

Host-Microbiome-Pathogen Triad Modeling 

 

 

Systems biology approaches 

Microbiomes contribute to human health and well-being and 

are involved in diseases. Disruption of microbiota increases risks 

of opportunistic infections and can alter pathogen life cycles, yet 

a comprehensive understanding of the links between microbiota 

and infections is still lacking. Systems biology enables the 

integration of biological data from multiple sources into 

mathematical models that describe systems-level activities 

governed by the interacting components. Building systems 

biology models of pathogen-host-microbiome interactions can 

provide an integrative viewpoint on infection risk mechanisms, 

guide experimental studies refining diagnostic targeting and 

treatment selection, and enable the prediction of the effects of 

selected interventions. 

AI models formally represent knowledge, make predictions, 

and provide insights into pathogen-host-microbiome 

interactions-formulating complex biological problems in 

quantitative terms and capturing diverse operating principles. By 

permitting in silico experiments, they facilitate the generation of 

and testing hypotheses, thus accelerating cautionary evaluation 

of clinically and biologically relevant scenarios-hypothetical 

perturbations of the microbiome, microbiome shifts induced by 

vaccines or therapies, and the predicted outcomes of such events 
[5, 21]. Cross-reference the title ‘AI models simulating 

interactions’ when planning ‘Implications for immune therapies.’ 
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AI models simulating interactions 

Machine learning models provide unique tools for scientific 

exploration of pathogen-host-microbiome interactions after 

infection. In silico experiments can test hypotheses about 

transmission pathways and quantify their likely rapidity. Data-

driven, dynamical models of microbiome evolution inform the 

potential for microbiota-targeted therapies. One example of these 

models is “Relationships between commensal bacteria and co-

infecting pathogens determine the severity of intestinal 

infection,” which investigates how key pathogens subvert host 

defenses and condition microbiota structure to facilitate 

transmission of superinfections and vice versa, influencing 

treatment and infection risk. The system is formulated as a 

compartmental model where populations are subject to mass-

action transmission, horizontal gene transfer, and class-based 

competition. Individual microorganisms govern their optimal 

acquisition depending on microbiota structure, readouts are time 

series of abundances, and the corresponding procedures enable 

discerning the modelling and mechanistic processes with 

maximum predictive, likelihood-based accuracy [64]. 

Implications for immune therapies 

Insights into the triadic pathogen-host-microbiome 

interactions outlined above may unlock novel 

immunomodulatory strategies for infections and sepsis [9]. 

Interactions with the microbiome shape safety and efficacy 

outcomes of vaccines and therapies based on these immune 

mechanisms. Reasoning around these influences could therefore 

inform precision diagnostics targeting the most susceptible 

pathways. Pathogen-host-microbiome modelling of C. difficile, 

uropathogenic E. coli, and the fungal triad of Candida albicans, 

Candida glabrata, and Saccharomyces cerevisiae illustrates the 

varied and significant impact of microbiota on immune system 
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regulation. Within this framework one can further probe the 

relevance of pathway-specific immune signatures for different 

infections. 
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Chapter - 11 

Ethical, Legal, and Social Implications (ESI) 

 

 

Data privacy in microbiome and AI applications 

Drawing relevant lessons from the human microbiome, 

disease sensitivity and immune regulation emerge as two 

fundamental aspects of infectious diseases. Multiple mechanisms 

illustrate how microbiome perturbations contribute to heightened 

infection susceptibility. Conversely, the interplay between 

pathogens, microbiome and host-specific immune regulation 

presents a basis for predictive diagnostics regarding infection 

outcomes [65]. AI adoption offers promising avenues for 

diagnostic tool development, accelerating detection of dysbiosis 

and biotic pathways linked to intervention strategies. The use of 

artificial intelligence (AI) techniques is further distinguished by 

its capacity to handle big data sets, elevating their potential as 

tools for guiding microbiome models and delivery systems. 

Bias in AI models 

These frameworks encounter population bias when the 

characteristics of the training data differ significantly from those 

of the target population. For instance, a model trained mainly on 

White Americans may yield higher error rates for other 

demographics. Within cardiac imaging and digital histology, 

variations in equipment and protocols among institutions 

introduce site-specific signatures in the data that can also lead to 

population bias when models are deployed elsewhere [66]. 



 

Page | 55 

Informed consent for microbiome-based diagnostics 

The integration of next-generation sequencing to profile the 

microbiome holds great promise for improved diagnostics across 

a variety of infectious diseases, particularly bacterial infections. 

However, microbiota profiling is still an emergent field and 

microbiome-based diagnostics have yet to be adopted for clinical 

use. Rigorous evaluation of the accuracy of these diagnostics, as 

well as their integration in clinical practice, is still ongoing. 

Understanding the evolution, distribution, and growth of co-

infecting pathogens, notably during co-infection with common 

pathogens, is critical for guiding treatment strategies. Additional 

modelling efforts aimed at understanding pathogen spread, end-

points, and optimally-targeted treatment strategies also offer 

potential. Cross-jurisdictional spread surveillance is also critical, 

and AI models have the potential to play a pivotal role in such 

investigations. 

The optimisation of epidemic- and intervention-targeting 

agent deployment across tightly co-dependent networks 

represents an additional modelling challenge with far-reaching 

implications for tackling future pandemics. The emergence of 

bulk omics technologies presents another important opportunity; 

the integration of host/viral and virome data on the same sample 

will enable the study of the interplay between human host 

response and virus (including bacteria) interactions in infectious 

diseases. Microbiota studies have so far exclusively focused on a 

single compartment (e.g., blood or gut); tracking pathogens, 

microbiota and viral pathogens across multiple samples and 

compartments is crucial in unravelling the community responses 

to pathogen challenges and virulence factors such as 

antimicrobial resistance. Companion datasets, including virome, 

metabolome, and metabolome-soil datasets, may aid in further 

elucidating microbial network-level understanding of the impact 

of soil on the microbiome and the role of viral co-infection on 
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pathogenicity and spread. Across Pandemic 1, Pandemic 2, and 

Pandemic 3 studies, the impact of individual pathogens and their 

respective interactions from circadian, annual, and pandemic 

cycles can be investigated [67]. 
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Chapter - 12 

Case Studies in Precision Microbiome Medicine 

 

 

COVID-19 and microbiome interactions 

COVID-19 emerged in December 2019 as a serious 

pandemic; its causative agent, SARS-CoV-2, is transmitted 

mainly via respiratory droplets. The microbiome plays key roles 

in the onset, development, and recovery from COVID-19. 

Perturbations of the gut microbiome have been associated with 

an increased risk of acute respiratory distress syndrome and 

COVID-19 severity. Concomitant infection with pathogens such 

as influenza a virus has been correlated with more severe disease. 

The accumulation of harmful pathogens can, on the other hand, 

promote gut dysbiosis, compromising the barrier against SARS-

CoV-2 and favouring replication. Continuous monitoring of the 

microbiome may provide complementary insights into COVID-

19 progression [68]. 

Recent advances in rapid and accurate detection of a 

pathogen’s presence or absence have paved the way for an 

independent pathway towards reliable diagnosis and ongoing 

monitoring of COVID-19. The pathogen-host-microbiome 

triadic interactions associated with COVID-19 allow for serious 

yet timely surveillance, as existing co-infections consume 

portions of valuable information used in previous models. Early 

screening has emerged as a priority target; the combination of 

key features from low-cost instruments with multi-omics 

approaches empowers strategic decision-making around not only 

COVID-19 but also other respiratory infectious diseases. 
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AI diagnostics in tuberculosis and HIV 

Applications of Artificial Intelligence in Microbial Diagnosis 

The diagnosis is an important factor in healthcare care, and it is 

essential to identify microorganisms that cause infections and 

diseases. The application of artificial intelligence (AI) systems 

can improve disease management, drug development, antibiotic 

resistance prediction, and epidemiological monitoring in the field 

of microbial diagnosis. AI systems can quickly and accurately 

detect infections, including new and drug-resistant strains, and 

enable early detection of antibiotic resistance and improved 

diagnostic techniques. The application of AI in bacterial 

diagnosis focuses on the speed, precision, and identification of 

pathogens and the ability to predict antibiotic resistance. 

Microbial diagnosis entails the identification of microorganisms 

through techniques such as culture, molecular analysis, and 

imaging, which constitute a pivotal domain within the realm of 

healthcare. It starts with appropriate sample collection and runs 

into several problems with conventional procedures, including 

sample handling, difficulty in culture, incorrect identification, 

and antimicrobial susceptibility testing difficulties. These 

traditional methods require manpower, and treatment is often 

delayed. Artificial intelligence (AI) has revolutionized the field 

of microbial diagnostics by providing more precise and current 

findings. AI analyzes data, pattern recognition, and diagnostic 

processes faster. It is essential for early identification of the 

disease, advancement of treatment, custom treatment, and 

epidemic monitoring. Advanced data sets are analyzed by AI-

driven algorithms to detect infections rapidly, anticipate disease 

outbreaks, and improve treatment approaches and outcomes. The 

use of AI in microbial diagnosis raises concerns about ethics, 

including protecting patient privacy, addressing algorithmic 

biases, maintaining data security, promoting transparency, and 

ensuring equal treatment. 
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Machine learning of the Whole Genome Sequence of 

Mycobacterium Tuberculosis: A Scoping PRISMA-based 

Review This review analyzes AI models for predicting DR-TB 

profiles, including AI techniques, datasets, and performance 

metrics, to understand strengths and limitations. It discusses 

experimental setups, data sources, and evaluation methodologies 

to gain insights into advancements and challenges and suggests 

future research directions. Proposed avenues include integrating 

multiple AI techniques with other modalities, developing robust 

models for diverse, noisy data, predicting resistance to additional 

drugs, combining AI with molecular diagnostics or biosensors 

for rapid detection, and evaluating cost-effectiveness and ethics 

in low- and middle-income countries. The review also 

emphasizes expanding diverse training datasets across 

geographic regions and genetic variants of M. tuberculosis to 

improve generalizability, and developing user-friendly 

bioinformatics tools to interpret whole-genome sequencing data. 

Limitations include diversity of ML approaches and inconsistent 

model naming, which can hinder article discovery; to mitigate 

this, a manual search of references and tools like Research Rabbit 

were used, though omissions may still occur. 

Nosocomial infections and microbiome disruption 

Healthcare environments are associated with distinct 

microbial communities that differ significantly from those found 

in the community [5]. The hospital environment comprises 

complex ecosystems composed of microbes of human, animal, 

and environmental origins, including those that are pathogenic to 

humans [9]. Although many hospital pathogens are already well-

established in the community at the time of admission, disruption 

of the microbiome due to factors such as surgery, chemotherapy, 

antibiotic treatment, and prosthetic implants enhances the risk of 

infection. Such disruption enables pathogens to exploit vacant 

niches, spread through food and water, or, in the case of 
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opportunistic pathogens such as C. difficile, take advantage of 

decreased microbial competition. Early disruption therefore 

represents a critical period that must be monitored and curbed to 

decrease infection risk. The hospital environment offers both 

opportunities for mitigation, through the implementation of 

effective and rapid diagnostics, and challenges, such as enabling 

low-cost standalone tools that are simple to administer and 

incorporate into busy clinical workflows. 
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Chapter - 13 

Regulatory Frameworks and Clinical 

Implementation 

 

 

FDA and EMA guidelines on AI/microbiome tools 

Regulatory agencies have issued important statements on the 

use of AI tools in healthcare. The FDA’s discussion paper on 

“Artificial Intelligence-Based Software as a Medical Device” 

provides guidance for software that proposes patient diagnoses, 

the selection of therapeutic options, or any other clinical decision 

that determines patient management. Similar considerations may 

apply to diagnostics involving severe disease phenotypes or life-

threatening conditions, which require high reliability and 

accuracy, especially when the result implies a change in the 

prescribed treatment or care. 

Alongside the necessity of conducting clinical trials, the 

continuous and ongoing evaluation of AI systems throughout 

their use is crucially important to ensure patient safety 

effectively. This aspect is especially relevant in the context of the 

European Union, where the Medical Device Regulation 

explicitly states that post-market surveillance is an essential 

component for gathering real-world evidence regarding the 

performance and associated risks of medical devices. 

Furthermore, the stringent requirement for the traceability of all 

AI decisions necessitates clear and comprehensive reporting as 

well as justifications of the various data-dependent factors that 

drive the decision-making process. The European Medicines 

Agency's draft discussion on "Guidelines on the Use of Artificial 
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Intelligence in Medicinal Product Development" provides 

detailed delineation regarding the use of AI for medicines that are 

reliant upon artificial intelligence at any stage in the 

comprehensive process: including design, development, 

manufacturing, and quality control. AI applications must adhere 

meticulously to a comprehensive set of principles of 

trustworthiness; namely, that the system operates effectively 

within clearly defined and established boundaries and is 

demonstrably accurate, reliable, valid, safe, secure, and 

explainable. In addition, it must be able to be audited thoroughly, 

avoid or minimize unintended biases effectively, and remain 

under human control throughout its operation [69, 70, 71, 72]. 

The advent of machine learning (ML) in microbiome science 

paves the way for clinical AI-enabled microbiome tools with the 

potential to improve patient health outcomes [1]. These tools can 

support the prescription of microbiome-targeted therapies by 

predicting the effect of specific microbiome modulations on host 

traits. Regulatory guidelines anticipate widespread adoption of 

ML enzyme prediction tools in the bio-manufacturing sector, 

suggesting similar uptake in clinical microbiome applications. 

Microbiome tools use data such as 16S rRNA gene 

sequencing, shotgun metagenomics, and metabolomics [2]. The 

explanatory notes from the FDA state that microbiome data 

constitutes an additional diverse input and output layer that is not 

the de-facto narrative of the patient (e.g., diagnosis) or the 

prescription (e.g., drug selection). Microbiome analysis serves as 

an exploratory scientific investigation of the relationship 

between host and microbiota. Four dimensions of microbiome 

data and their heterogeneous nature necessitate elucidation of 

analytical validity, clinical validity, and clinical utility. Detailed 

evidence standards for microbiome-targeted AI systems will be 

addressed later. 
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Multiple literature sources report secure handling of 

electronic health record (EHR) data during AI system 

development, and other domains demonstrate similar security 

assurances with genomic data. Thus, these insights are applicable 

when accompanying microbiome data is integrated into a broader 

multi-omics clinical testing framework. As a consequence, 

concern over the provision of explanatory information and 

stimulus for data-provenance strategies will be highlighted in 

subsequent sections. 

Artificial Intelligence (AI) is progressively being integrated 

into the research and application of microbiome science. The 

microbiome is increasingly recognized as a key player in human 

health. A wealth of microbiome data encompassing gut, oral, 

vaginal, skin, and biogeographical distinctions is available. 

Appropriate anonymized and aggregated microbiome samples 

and associated metadata can be shared with transparent protocols 

for controlled research. Until now, the standard for microbiome 

data sharing has been driven by scientific collaboration. 

Commercial organizations are increasingly entering the 

microbiome data domain, highlighting a need to align 

commercial interests with freedom of scientific research and 

open access sharing to support these interests [3, 1]. 

Microbiome data and analytics underpin the practice of 

machine-learning-enhanced microbiota analysis to assess and 

provide clinically actionable insights into human health. Data 

types such as taxonomic and functional abundances captured 

through 16S ribosomal RNA (rRNA) gene amplicon sequencing, 

shotgun metagenomic sequencing, metatranscriptomic 

sequencing, or metabolomic profiling represent the core of this 

domain. Additional data that provide valuable contextual 

information for microbiome-targeted analysis include clinical 

metadata, dietary intake records and commonly co-analyzed 

dietary profiles, multi-omics measurements from host 



 

Page | 64 

biosamples, gut transit time and body mass index derived from 

subject questionnaires or wearable devices, and other 

microbiome-independent time series observations and widely 

available longitudinal datasets [1]. 

Artificial intelligence (AI)-the field of computer science 

encompassing machine-learning (ML) and deep-learning (DL) 

methods-has rapidly evolved to become a pivotal element of 

microbiome science across diverse biomedical domains. AI-

driven solutions capable of predicting microbiome composition, 

microbial functionality, and host-microbiome interactions 

empower practitioners to efficiently derive clinically actionable 

insights from complex microbiome datasets. These AI-enabled 

microbiome tools address the well-documented need for 

advanced analysis methods that facilitate broader adoption of 

microbiome science in clinical practice. Designed to augment, 

not replace, professional judgement, they assist healthcare 

practitioners in gaining a deeper understanding of the relation 

between human health and the microbiome. 

The U.S. FDA recognizes microbiome-focused artificial 

intelligence (AI) tools as devices or software as a medical device 

(SaMD) for microbial characterization that derive clinical 

insights without further data processing. Estimating the relevance 

of raw microbiome information retains analytical validity. 

Similarly, AI-enabled interpretation of microbiomes generally 

remains classified as SaMD rather than an in vitro diagnostic 

device [4]. Microbiome-targeted AI analysis occupies a unique 

niche within restricted-device pathways by verifying analytical 

validity through content-provider assurances on data generation 

and instrument operability. Clinical-validation strategies for 

microbiome-centric AI vary widely; uncontrolled studies are 

commonplace, and a definitive gold standard remains elusive [5]. 

The FDA endorses continuous validation of artificial 

intelligence/machine learning (AI/ML) techniques and utilizes 
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real-world evidence to inform maintenance, alteration, and 

constrained expansion of indications, with expectations for 

ongoing safety and performance adherence. Regulatory 

discussions surrounding microbiome-centric tools emphasize 

performance and safety alongside real-world evidence and 

continuous-validation provisions found throughout the FDA’s 

AI/ML framework. The FDA prioritizes risk management and 

clinical intervention over conventional clinical-utility metrics, 

although observational studies capturing clinical impacts remain 

acceptable. Therefore, microbiome modeling following AI/ML 

principles will likely align with FDA regulatory intent. 

The US Food and Drug Administration (FDA) consolidates 

medical devices, such as microbiome-system tools, vaccination 

coverage, or weight loss applications. Regulatory attention for 

software-based assistance products depends on the specific 

claims being made. These items can still be regulated via the 

software-as-a-medical-device (SaMD) pathway. 

The FDA lists four guiding principles for SaMD 

classification:  

1) The device’s intended use. 

2) Data inputs and the outputs produced by the software 

3) The effect of those outputs on clinical decision-making. 

4) The workflow associated with implementing outputs or 

recommendations. 

Artificial intelligence/machine learning (AI/ML) platforms 

that adapt and improve over time are already subject to regulation 

on account of predictive-publication use cases. The agency has 

further stipulated that regulatory frameworks for AI/ML tools 

must account for concurrent collection of real-world data, 

provided that such evidence continues to assure safety and 

efficacy. 
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With the centre dedicated to digital health opening in 2020, 

FDA resources aimed at fostering responsible innovation have 

been released as part of the Digital Health Innovation Action 

Plan. The Digital Health Innovation Action Plan includes the 

Software Precertification Pilot Program and an AI/ML-driven 

Software as a Medical Device action plan outlining the 

development of a possible future regulatory model for oversight 

of software-based medical devices and their real-world 

performance. Both initiatives are accompanied by collaborative 

efforts with patient groups, health care providers, academics, and 

industry, aiming to determine thresholds and performance 

evaluations for metrics most critical to real-world operation of 

AI/ML-enabled devices. By virtue of their capacity to learn from 

real-world data and enhance performance on an ongoing basis, 

AI/ML systems stand to benefit markedly from data collected 

after deployment [6]. 

Marketing authorization pathways for devices, software, and 

AI/ML tools at the US FDA are accessible via the Industry 

Guidance and Digital Health Center of Excellence portals. 

Medical device regulations cover grounds for classification as a 

device and labeling requirements that apply whether intended for 

direct use by healthcare professionals or patients [5]. Marketing 

submission options comprise 510(k) and De Novo routes 

predicated on substantial equivalence and exemption from 

premarket review, respectively, as well as Pre-Market Approval 

which addresses a broader scope of safety and effectiveness 

criteria. 

Software that incorporates AI/ML or following human 

training is classified as Software as a Medical Device (SaMD) if 

it meets Medical Device Definition for Equipment and Software. 

The Digital Health Center of Excellence articulates a 

conservative position on SaMD regulation based on a consensus 

that the premarket review framework has not kept pace with 
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innovation. The Center defines AI/ML SaMD and stipulates a 

threshold that unregulated SaMDs may not alter clinical 

information to qualify for exemption. 

The EU approach to medical-device regulation, particularly 

in the post-marketing phase, is best understood in the context of 

the category of products subject to the Medical Device 

Regulation (MDR). In the absence of better-defined legal 

categories within the MDR, AI-driven microbiome products will 

typically qualify as software classified as a Class II-device or a 

Class II-a device addressed by the General Safety and 

Performance Requirements outlined in Annex I of the MDR. The 

main requirements apply not only during the pre-market phase 

but also in the post-market phase, where continuous assessments 

of performance and safety are required. The main difference of 

the requirements concerning the safety and performance of AI-

driven devices in the pre-market and post-marketing phases is 

that the latter must take into account data from actual clinical use 
[3]. 

The majority of AI medical software operating and being 

introduced in the European Union falls under the classification of 

class IIa or IIb. Both class IIa and IIb devices require an external 

audit and certification process to gain market access [7, 4]. The 

regulations governing artificial intelligence also stipulate that 

simplified and enhanced post-market surveillance should be an 

integral part of the conformity assessment process [3]. 

The European regulations use the CE mark to signify 

conformity with health, safety, and environmental standards. The 

Medical Device Regulation (EU) 2017/745 (MDR) classifies 

devices into four classes: I, IIa, IIb, and III, with higher classes 

indicating higher risk. Class I devices require self-certification, 

while most AI medical software falls under class IIa or IIb, which 

require external audits and certification for introduction [7]. 
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Regulatory Frameworks and Clinical Implementation of AI-

Driven Microbiome Tools outline the regulatory background of 

Artificial Intelligence-enabled microbiome analysis tools, which 

supplement conventional laboratory analyses of gut microbes 

with insight into health impact based on artificial intelligence 

(AI). This technology can enhance clinician decision-making 

after microbiome examination; help to select diet and 

supplements favourably influencing microbiome and health; and 

support the analysis of microbial evolution in response to diet, 

supplements, environmental exposure, and other factors. 

Practical AI-based digital approaches address medical needs: 

microbiome-aware selection of diets and supplements; pies, 

plots, and histograms illustrating expected health impact on a 

scale of severity and days after intervention; evolution charts; and 

microbiome health impact reporting. Internal and external 

oversight ensures acceptable levels of clinical relevance, health 

impact, and safety. 

The study designs for AI that targets microbiome data 

typically encompass clinical and preclinical investigations. 

Clinical investigations can vary in complexity, and a well-

defined baseline study design is crucial. A robust study should be 

designed to evaluate the AI software’s analytical and clinical 

validity, as well as the clinical utility of its output. Analytical 

validity examines whether the AI accurately predicts features 

from microbiome datasets and verifies that the ground truth is 

well-defined. Importantly, in a microbiome-focused AI 

implementation, the predicted features ought to involve test-

results-related microbiome signatures prior to evaluating clinical 

validity [8]. Clinical validity investigates how well the AI 

outcome correlates with clinical parameters of interest, reflected 

through clinical situations that permit sound evaluation. Clinical 

utility offers assurance that the AI output enhances clinical 

decision-making, potentially through a controlled intervention 
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study that demonstrates AI-backed decision-making leads to 

superior or more consistent outcomes compared to prevailing 

practices. 

The studies outlined primarily focus on microbiome-oriented 

AI directed at clinical validation. Addressing the AI tool's 

suitability while ensuring privacy and security requires a multi-

faceted design. Beyond individual consent, de-identification of 

personal data, governance of data handling, and clear description 

of data provenance constitute essential factors. The use of self-

reported questionnaires specifically addressing these dimensions, 

along with data lineage consideration, is paramount in these 

designs, which allows restrictive application of proprietary AI 

tools without compromising copyright protection. Ethical 

considerations and data governance, alongside privacy and 

security, emerge as prominent issues faced during the utilization 

of microbiome-related data. 

Microbiome-targeted artificial intelligence can enhance 

analytical, clinical, and translational validity, and few data types 

warrant such investments. Essential analytical capabilities 

include variety (spanning clinical, metagenomic, and phenotypic 

data) and correlation (the degree to which model features relate 

to existing knowledge). Vigilance is especially important 

regarding clinical validity, as models may raise unanticipated 

concerns beyond those planned for testing. 

Study designs that secure analytical validity yet prematurely 

constrain clinical validity encourage exploration of microbiome 

data spaces that expand on existing knowledge ( [9] ). Examples 

can include investigating target-disease spaces lacking direct 

clinical associations or leveraging rich phenotype data. 

Analytical validity, clinical validity, and clinical utility. The 

successful deployment of microbiome analytics in clinical 

settings is predicated upon well-defined standards for analytical 
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validity, clinical validity, and clinical utility. Such standards are 

further refined when regulatory reviews are applicable. 

Microbiome-targeted datasets afford the practical option of 

establishing analytical validity by extensive data provenance and 

system-agnostic data lineage. Accordingly, analytic tools can be 

deployed without prior clinical validation. With respect to 

clinical tools, analytical validity refers to tool application in 

accordance with described case studies and formal usage 

instructions, rather than comparative performance, whereas 

modelling is a prerequisite for clinical validity in non-regulated 

scenarios. Principles of clinical utility in microbiome analytics 

remain under exploration. Design frameworks mapping directly 

from clinical questions and case study characteristics support 

audit trail and provenance capture during real-world operation, 

thus ensuring alignment with system-independent validation 

principles. 

Workflow integration presents additional control over data 

transmission, provenance specification, and consent tracking, all 

of which are critical to regulatory compliance before system 

implementation, as detailed elsewhere [1]. 

Microbiome-focused data, characterised by high 

dimensionality and compositional parameters, impose further 

constraints on validation strategies. Data-focussed frameworks 

align seamlessly with established decision-making and clinical 

control concepts, facilitating rigorous validation exposition. 

The ethical implications of microbiome-targeted AI have 

earned increasing interest along with the rapid evolution of 

regulation and clinical applications. The need for ethics guidance 

in the AI domain is widely recognized across disciplines [3]. 

Ethical considerations encompass a diverse array of topics, 

including: inserting the regulatory focus on the content that 

follows. professional conduct in algorithm development; respect 
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for the rights and welfare of data subjects; establishment of 

appropriate institutional governance; and equitable access to 

tools that can potentially generate health impact. 

Frameworks for ethics in AI-based systems are being 

instituted to facilitate description and interpretation of ethics 

challenges. The ASIMOV project, undertaken under the auspices 

of a European University Association initiative involving the EU 

Commission on AI, provides a structured framework for 

recording ethical issues encountered during the development of 

university-based AI systems, whether in the education or 

research contexts. A key element of the project concerns the 

capacity to delineate systems under development that operate 

with an AI component de facto or de jure, thus amplifying system 

risk. The biomedical context of microbiome-targeted AI, coupled 

with regulatory scrutiny, composition of the overall development 

team, and patient-benefitting mission associated with the 

projects, all diminish the ethical burden of microbiome-focused 

algorithmic initiatives. The simplicity of the regulatory landscape 

further lightens the ethical workload. Given these strong 

incentive properties associated with microbiome-focused AI 

development, obscuring both ethical and regulatory challenges, 

precise articulation of existing concerns is both essential and 

beneficial. 

De-identification and consent play pivotal roles in securing 

microbiome data from the introduction of AI-enabled algorithms. 

De-identification refers to the removal of direct identifiers, such 

as names and Social Security numbers, that could enable the 

identification of study participants [10]. Re-identification risk 

increases when individuals possess sensitive information about 

themselves, and expansive datasets raise the likelihood of 

uncovering identifiable attributes. Data governance encompasses 

the authority and control over data assets and establishes data- 

and process-specific policies, procedures, and standards for the 
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data lifecycle [11]. Governance prioritises across-the-lifecycle 

management of personal data to mitigate the risks of misuse and 

unintended consequences. Consent signifies the agreement by an 

individual to the processing of their data under the specified 

terms. Consent enables organisations to engage in legally 

permissible data processing activities while preserving 

transparency, autonomy, and agency for the individual. 

De-identification, data governance, and consent are 

prerequisite design considerations for governance of individuals’ 

microbiome data and implementation of AI-driven microbiome 

applications. De-identification renders datasets non-attributable 

to individuals while preserving analytical value for modelling 

microbe-host interactions. Data governance supports de-

identification by establishing responsibilities for compliance 

with regulations and organizational guidelines, formulating 

appropriate policies, and monitoring adherence to them, as well 

as delineating data access rights and uses. These issues are 

closely intertwined with data provenance, analytical population 

definitions, and participant consent, described in further detail in 
[12]. 

Governance of microbiome data-which may derive from 

health records, treatments, public health data, self-reports, or 

direct measurements-is compounded by process intricacy and 

diversity of potential hosts. The transparency required for 

enabling the governance framework often limits the data-access 

restrictions needed to fulfil an identified use. For many 

microbiome applications, therefore, temporally delimited access 

to the data required for identification of the analytical population 

and the population itself may suffice in addition to the de-

identification necessary for the modelling stage. Governance thus 

extends to specification of the microbiome-access policy matrix 

and documentation of the data lineage throughout the workflow 
[11]. A coarse, time-correlated delineation of the models’ expected 
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domain aids in determining which records, treatments, or 

measurements constitute the initial data set when the governing 

policy permits access to the underlying data. 

Audit trails and cybersecurity measures are essential for 

protecting the safety and integrity of clinical algorithms and 

establishing clinician and patient trust [13]. Patient safety may be 

compromised when an algorithm operates on unexpected or 

unintentionally tampered data or is substituted with a different or 

defective algorithm. Furthermore, the algorithm deployment 

process with an Electronic Health Record (EHR)-prescribing 

user interface adds further avenues for unintended tampering. 

Industry best practices should therefore uphold a minimum audit 

log, tracking the algorithm, the dataset, and the deployment 

environment. The ability to prevent tampering with the 

algorithm, either intent-driven or by another source, in 

accordance with industry standards reinforces the EHR-

prescribing framework [14]. Consequently, maintaining a secure 

link within the EHR infrastructure that prevents unconsented 

alterations before deployment and trace-based communication 

once in execution strengthens algorithm trustworthiness. 

Clinical microbiome science has seen rapid growth of AI-

enabled tools spanning microbiome sequencing, a priori 

research, and cohort selection [15]. The potential to address high 

dimensionality, sparsity, and complex interactions in 

microbiome data highlights the importance of study design, 

regulatory engagement, legal requirements, proprietary data use, 

and product lifecycle considerations. Workflow integration and 

human-in-the-loop design optimise demand, address clinician 

concerns on algorithm limitations, and facilitate abiding by 

regulatory standards for continuous monitoring, algorithm 

updates, and audit trails. Tools can enhance Electronic Health 

Record (EHR) data collection, reduce data handling risks, and 

ensure patient consent compliance. 
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Microbiome tools achieve clinical integration through two 

avenues: connection with electronic health records (EHR) and 

attachment to laboratory workflows. EHR integration sits at the 

forefront of clinical decision-support effort and is often the most 

desirable mechanism for any AI-based tool [3]. Such design aligns 

data intake with the clinical environment and allows the sourced 

information to remain in-place, thus strengthening data 

governance. These properties also lend themselves well to 

human-in-the-loop modalities, where clinician and administrator 

interaction constitutes a core source of knowledge [16]. Clean 

input channels further assist algorithm monitoring [17]. The lab-

centric counterpart, while often better suited to convenience and 

fidelity of microbiome transmission, demonstrates greater risk of 

disrupted data lineages and algorithm degradation through cycle 

iterations. 

Linking microbiome resources directly to a laboratory 

information management system is the initial step to laboratory 

integration. Laboratory solutions emerge from defined missions: 

clarification of the use case, establishment of input heralds, and 

consideration of post-analysis output, which can take the form of 

stand-alone reports or direct feed-through into a patient- or 

sample-bound log. Beyond report mechanisms, successful 

microbiome-centric integrations secure multiple pathways into 

entry-level options. A solution with limited lab compatibility can 

therefore function as a contingency while reviews of linking 

possibilities unfold. 

Microbiome-targeted AI tools are typically introduced into 

clinical workflows via software interfaces that integrate into 

electronic health record and laboratory information management 

systems. These clinician-facing tools are designed to enhance 

microbiome analysis, aid clinical decision-making, and reduce 

the cognitive burden on busy practitioners. Human-in-the-loop 

design principles enable iterative co-development and formative 
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evaluation through user studies, which support practice-based 

decision-making and reduce the risk of developing mismatched 

systems [18]. Aligning the intended use, user needs, and input data 

with every revision promotes relevance, while keeping clinicians 

informed about the state of AI-driven analyses fosters 

transparency and trust. Integration of microbiome-targeted AI 

tools with existing electronic health record (EHR) systems and 

laboratory workflows supports streamlined data exchange and 

secure transfer of sensitive information while preserving 

clinician control over the analytical process. For microbiome-

targeted AI tools, preliminary training and monitoring can occur 

outside clinical settings prior to integration, and detailed change 

logs facilitate regulatory compliance by documenting version 

updates and adjustments to datasets and methodologies. Such 

integration not only aligns with human-centered design and 

regulatory requirements but also addresses specific practitioner 

workflows, allowing tools to better reflect expert expectations 

and deliver clinically relevant analyses [19]. Human-in-the-loop 

design and clinician-facing interfaces represent foundational 

elements of the development process, ensuring that AI systems 

support rather than supplant practitioner expertise and that 

regulatory integration occurs early in the tool’s lifecycle. 

An implementation strategy that aligns with the clinical AI 

lifecycle promotes the rapid integration of new microbiome-

focused tools. Data streams from the extensive electronic health 

record and laboratory information management systems residing 

in healthcare institutions can complement microbiome-focused 

models, as can curated databases of public microbiome studies. 

These data sources include microbiome samples, clinical 

outcomes, and details about patient diagnoses, laboratory tests, 

medications, and treatments-and they capture the progression of 

the healthcare system toward the specified patient outcome. 

Regular creation of these data rounds and their scientific 
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accessibility present a significant research avenue to facilitate 

data-hungry microbiome AI. A human-in-the-loop design 

enables submission of pertinent information for a tool that uses 

new data types and alterations of existing data types while 

assisting physicians in comprehending the tool's functioning and 

the motivation behind inputs provided [20]. 

Post-market performance of AI-enabled tools targeting the 

human microbiome remains of legitimate regulatory interest 

because data-generating technology must change to remain 

relevant, data-generation methods evolve, and the nature of 

algorithm-based predictions naturally changes when refitted. 

Adjustments are anticipated, and these changes hold implications 

for safety-performance linked to an individual tool or model 

could alter-although such model changes disrupt overall 

functionality only in rare instances that also require fresh 

regulatory review. Hence, in well-designed implementations, 

versioning of algorithms differs from a product-like scenario in 

which the final configuration is expected to persist. 

Secure systems can maintain an audit trail of configuration 

settings, enabling patients and providers to verify that an 

instrument operates as expected and linking constitution of the 

AI-driven tool specifically to post-market risk assessment as 

established earlier [21]. Afterward, routine performance evolution 

has implications from a reporting perspective. In the case of 

conventional software, updates deemed not to compromise safety 

or effectiveness need not be communicated to the regulatory 

authority but generally must continue to address validated risks. 

External audit ensures that all substantial changes are precisely 

recorded [6] and Version Control marks alterations separately; 

only repetitions of core configurations must then undergo fresh 

scrutiny. 
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Post-market performance monitoring focuses on translating 

microbiome research into clinical practice and validating tools in 

real-world settings [22]. For AI-driven microbiome tools, 

translating research to practice typically entails integrating 

clinical data with microbiome data. Translating the complex 

relationship between microbiome composition and phenotypes 

directly into an AI algorithm can be challenging, particularly for 

data-prioritized methods such as deep learning. To preserve 

experimental design and leverage assisting data, an alternative is 

to utilize lightweight predictive models to estimate microbiome 

composition and apply a second model to relate composition to 

phenotypic response [9]. Because the first model has no access to 

experimental or clinical features, variant autotrophic models or 

biogeographical models that do not use prior knowledge of the 

full metabolic graph are preferred, although reinforcing from 

biochemical data is also possible. 

Risk controls around decision-making are therefore essential, 

and a robust approach ensures they remain effective throughout 

the algorithm lifecycle. Continuous monitoring of statistical 

risks, performance metrics, and data sources can indicate when 

real-world drift or new information may affect safety and 

efficacy [3]. 

Algorithm lifecycles, including planned updates and ongoing 

monitoring, warrant regulatory consideration because they 

influence evidence generation. All algorithm modifications 

should follow a pre-defined process that assesses and articulates 

their impact on safety, performance, and applicability to existing 

use cases. Documenting the scope of changes and the standard 

applied for assessment, along with all associated information, 

supports transparency during review and audit. 

AI introduces unique complexities in assessing and 

mitigating safety, clinical, and operational risks that must be 
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methodically addressed for effective microbiome applications. 

The European Commission outlines an AI-specific risk 

framework: “minimal” (e.g., crowdsourcing applications), 

“limited” (e.g., risk evaluation of honorary co-authorship in 

scientific papers), “high” (e.g., systems that assist with 

substantial judicial decisions), and “unacceptable” (e.g., social 

scoring systems). Microbiome-targeted AI could be positioned as 

either high risk influenced by clinical context (e.g., disparate 

healthcare professional inability to provide timely treatment to 

patients with acute kidney injury) or as limited risk (e.g., food-

medication interactions) [3]. 

Another method considers the foreseeable impact of AI-

generated advice on essential decisions related to patients and 

organisations. An “ActU” score aggregates urgency and 

uncertainty into a single measure (A = urgency, C = 

consequences, T = beneficence, U = uncertainty). Real-world 

illustrations enhance perception of associated contingencies 

revealing the intricacy of effective operation. Displaying 

limitations for patient understanding is mandated and must 

accommodate the inherent uncertainty existing in all predictive 

applications to comply with existing legal frameworks [23]. 

Establishing fundamental principles for risk assessment of 

AI-driven tools in microbiome science helps ensure responsible 

and compliant use. Although in vitro assays and omics 

technologies underpin most microbiome characterizations, tools 

are increasingly incorporating AI that produces conclusions 

based on prior knowledge or human interpretation, alongside live 

microbiota interventions [24]. Regulatory frameworks for medical 

devices and software as a medical device must therefore extend 

to software that provides microbiome-related conclusions, 

justifying the need to characterize various aspects and limitations 

of AI-driven tools in the context of perceived risks to patients. 
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A comprehensive risk framework informs manufacturers and 

users of AI-powered instruments targeting the microbiome about 

salient risks and acceptable mitigations. Within this ecosystem, 

users-including healthcare providers, researchers and various 

technical experts-make risk-aware decisions on employing the 

contents of an AI-enabled software as part of a clinical workflow. 

The high stakes associated with microbiome analysis heighten 

interest in applying an assessment model to guide responsible 

deployment of AI-driven microbiome tools and frame a discourse 

on the fundamentally probabilistic nature of AI models and the 

uncertainties of digital data transmission. The following risk 

assessment approach aligns with FDA’s draft guidance on 

artificial intelligence-based clinical decision support software 

regarding considerations for clear user communication of the 

inherent limitations and uncertainties of such models. 

Artificial Intelligence (AI) performs a crucial role in the 

analysis of microbiome data, but the intricacy of microbiome 

science frequently leads to uncertainty regarding the predictions 

generated by AI-driven tools; hence, the limitations and 

uncertainty of such devices must be communicated to the patient. 

Risk-analyses are indispensable for engineers and regulators to 

manage AI-generated uncertainty, and these uncertainties can be 

qualitative, quantitative, or model-related [25]. Qualitative 

uncertainty encompasses the appropriate application of a model, 

for example, whether an inflammatory bowel disease (IBD) risk-

prediction model is suitable for a patient that is not at risk of IBD. 

Quantitative uncertainty encapsulates population-based analyses 

that are location-specific. The concerning tendency to 

underestimate the popularity of disease is highlighted here 

contextually. Model uncertainty pertains to the additional 

estimations arising from, for instance, the adoption of a multi-

layered auto-encoder that performs well across multiple datasets 

but still leads to an incomplete understanding of the observed 
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data. 

Uncertainty encompasses the limitations of the model-data 

fit, yet its quantification depends heavily on the modelling stage. 

This challenge is particularly acute when employing deep-

learning models, hence Oncocount and Pathway models - which 

are based on generalised linear models (GLMs) - could be 

preferable from an uncertainty-communicating perspective. 

Classification uncertainty stems from the challenge of 

determining the correct label in supervised deep-learning 

functionality or evaluating the absence of documented detection. 

Nevertheless, even when stating that the prediction carries 

uncertainty, AI devices might still inadvertently convey 

reliability, perhaps because of the AI-driven, workshop-oriented, 

or entirely unsupervised manner of operation. Such error patterns 

illustrate the paramount importance of clearly conveying 

limitations and uncertainty to patients. 

An examination of clinical scenarios and completed 

regulatory submissions for AI-powered microbiome tools 

reinforces the proposed delivery and validation frameworks, 

offering concrete illustrations to stimulate further development. 

Regulatory pathways for Clinical Decision Support (CDS) 

tools using evidence from microbiome analysis are briefly 

outlined, followed by extraction of lessons learned from 

completed FDA regulatory submissions for an AI-enabled 

Microbiome-Metabolome Risk Assessment Capstone as a 

Clinical Decision Support tool. These considerations provide 

practical context for the regulatory-specific discussions. CDS or 

other AI tools that do not have a direct microbiome target 

application can still provide useful precedent examples, enabling 

machine learning models with interpretable outputs to 

characterise the human microbiome in an innovative manner. 

Regulatory submissions to document the inherent safety of 
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decision support tools are indispensable. The importance of 

disclosing tool limitations and prediction uncertainty to patients 

cannot be overstated; AI-generated information can be 

misinterpreted and inadvertently harm patients if AI model 

uncertainty is misjudged by the end-user or clinician performing 

the interpretation 

The Food and Drug Administration (FDA) defines a Medical 

Device as instruments, apparatuses, and in vitro reagents 

intended for use for the diagnosis, cure, mitigation, treatment, or 

prevention of disease. The FDA defines software as a medical 

device (SaMD) broadly as any software that is intended for one 

or more medical purposes without being considered a part of a 

hardware medical device, thus extending the definition of 

Medical Devices to encompass SaMD, which can range from 

highly complex to relatively simple [3]. AI/ML algorithms 

implemented in a microbiome-based model available as SaaMD 

can therefore be considered a Medical Device [26]. Serious biases 

can lead to over-reliance on models, especially if bias derives 

from misunderstood functions of microbiomes or related 

signalling. The psychiatric or psychological consequences-

sustained anxiety worrying about physiological distress or 

chronic depression-of an inaccurate SaMD generated by a 

microbiome-based model benchmarked by observational data 

can be severe, justifying consideration of potential Harm as well 

as intended Benefits when prioritizing a particular de-bugging 

task. 

In a review of regulatory submission trajectories at the FDA 

for medicinal products, [27] identified lessons that can inform the 

development of AI tools for microbiome analysis. Submission 

failures are often linked to the absence of a clearly articulated 

scientific rationale. Gaps in analytical or clinical validation are 

also major causes of deficiency in the submission package. The 

use of a digital or model-based framework to describe 
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supplemental components of microbiome modelling can enhance 

understandability and straightforwardness of application. Having 

an AI-enabled microbiome modelling program and the 

corresponding regulatory pathway clearly defined before initial 

development can significantly economize resource use and 

accelerate access to the market. 

Clinical microbiome tools enhancing patient care through 

insights on the gut ecosystem may be implemented safely and 

effectively within healthcare today. [3] Regulation-navigating 

validation studies matching clinical microbiome applications 

with appropriate FDA or EMA pathways demonstrate concurrent 

alignment of analytical, clinical, operational, privacy, security, 

and ethical responsibilities. Sufficiently understanding 

microbiome data diversity permits identification of suitable 

evidence standards-summary-based investigations support robust 

microbiome AI evidence, satisfying amenability to alternative 

regulatory regimes. 

AI-driven systems can improve the quality of care and assist 

compliance with safety guidelines and legal obligations. 

Maintaining workflow integration, governance, and risk 

management ensures systematic alignment with agency 

standards and patient welfare. Continuous monitoring safeguards 

patient welfare amid algorithm updates. Patient data privacy 

expands access to microbiome insights in diverse settings and 

permits system-level workflow automation. 

Clinical trial designs for microbiome-based diagnostics 

AI-powered diagnostics of human health and disease rely on 

omics science to capture molecular fingerprints of biological 

systems. Such information facilitates precise and individualized 

medical decisions that positively affect patient health throughout 

the life cycle. Data-driven models for inferring microbial co-

occurrence patterns from amplicon and metagenomic surveys 
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allow the reconstruction of both taxonomy and function across 

eukaryotes, bacteria, and viruses, enabling an understanding of 

healthy and diseased states spanning microbiomes, food webs, 

and the flourishing ecosystem of Earth. Because their 

spatiotemporal features are navigable from diverse 

environmental niches to the human biogeome, biosensors 

capable of providing the status of microbial multitudes 

simultaneously support early and actionable detection of disease 

causation-empowering microbiome diagnostics to discover 

health threats and infection risk, guide therapeutic selection, and 

personalize interventions. At the interface of these health 

imperatives lies a convergence of precision microbiome 

medicine and microbial diagnostics. Specifically, listed below 

are clinical trial designs appropriate for testing various ecological 

or identified signals of pathogens or health states together with 

AI-powered algorithms for predicting the presence or 

physiological state of targeted microorganisms in microbiome 

samples or biosensors [73]. Microbiome diagnostics hold the 

potential to greatly benefit human health. 

Standardization challenges 

In order to compare and integrate findings on microbiome 

dynamics across studies utilizing different sequencing methods, 

techniques, analysis tools, and reporting formats, the effort to 

standardize microbiome reporting has gained wide interest in the 

research community. Since microbiome diagnostics and clinical 

applications are projected to increase, current methods and data 

formats must meet minimum levels of standardization [74]. 
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Chapter - 14 

Future Frontiers: Gut-Brain Axis, Virome, and 

Beyond 

 

 

Emerging microbiome domains (fungome, virome, 

mycobiome) 

Explorations of the human microbiota typically focus on 

archetypal members of the bacteria and archaea domains of life, 

especially their evolutionary relationships, community 

composition, and functional capacities. However, other 

microbiome components and higher-level microbial taxonomic 

units are increasingly recognized. In 2017, the term “fungome” 

appeared in a broad call for integrative resolution of simultaneous 

fungal surveys spanning culture assays and next-generation 

sequencing. The “virome” describes viruses and their hosts; as 

biogeochemical roles of noncellular, filterable life forms gained 

recognition, viromic portraits were crafted for the 2011 human 

virome project. Similarly, “mycobiome” denotes fungal 

functional or phylogenetic service avatars: such harvesting 

enables association of observed anomalies or fabulations (species 

presence/absence, abundance shifts) to precise community 

controllers, guiding articulation of cause/effect systems 

governing complex microbial systems [35]. A substantial catalog 

of structured training sets of rich, well-documented longitudinal 

multimixture biocensus time-series, curing forbidding 

generation-scattering in epidemiological-speciation inference-

forecasting between booming generation-scattering types, has 

thus begun to accrue, nourished by a general emergence of 
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actively curated sample bank services; representative sets are 

cited. 

Microbiome and neuroinfectious diseases 

Pathogen propagation can facilitate the crossing of multiple 

bacteria through the blood-brain barrier [75]. Infection risk can 

increase due to the dysregulation of the oral microbiome. A 

proposed shift in the composition and activity of the gut-brain 

microbial communities can influence physiology, thereby 

promoting changes beyond the gut. Subject-microbiome 

relationships, physiological response, and infection 

predisposition can be assessed through microbiome 

characterizations. 

AI’s role in decoding complex microbial ecosystems 

Artificial intelligence (AI) is crucial for deciphering intricate 

microbial ecosystems due to the complexity and dynamism of 

microbial interactivity, along with the diverse formats of AI-

enabled data acquisition. By analyzing microbial datasets 

gathered at various locations on an individual, AI elucidates the 

interplay of community structure, function, and health condition 

and suggests opportunistic pathogens when infections are 

underway. Even after an infection has been pinpointed, AI can 

project population dynamics; model the competition, 

cooperation, and network interplay of community members; and 

estimate the cohabitation time of predominant species. 

Furthermore, AI helps recognize the temporal evolution of 

ecosystems, picks pertinent characteristics from high-

dimensional databases, and formulates hypotheses on ecological 

principles governing the emergence of specific 

interdependencies [9]. At a strategic level, a human microbiome-

based focus driving rapid tooling development enables an 

examination and operationalization of microbiome inputs for 

diverse other fields including residues, surfaces, and extinction; 
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deciphering the influence of human behavior on plant growth 

through soil microbiomes; and characterizing single-cell 

microbial dynamism to optimize reactor efficiency. 
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Chapter - 15 

Conclusion and Vision for the Future 

 

 

Synergy between AI and microbiome science 

Artificial Intelligence (AI) and Machine Learning (ML) 

approaches provide tremendous and invaluable insights into the 

gut microbiome as related to human health and the complexities 

surrounding it. Precision medicine, a tailored approach that 

customizes medical prevention and treatments to the unique 

characteristics of each individual patient, leads to personalized 

insights derived from the specific composition of the gut 

microbiome and its interactions with overall health. Automated 

Machine Learning (AutoML) models are exceptionally well 

suited for analyzing microbiome data due to its inherent size, 

sparsity, and complexity, as well as the commonly shared 

standardized data formats that facilitate the seamless merging of 

diverse datasets collected from robots and sensors with detailed 

genome sequencing data. The ability to provision these extensive 

datasets leads to the development of unique emergent models that 

are specific to each individual and can persist for the entire 

duration of that model's applicability. The realms of AI and the 

microbiome have emerged as crucially important areas of study, 

both independently and synergistically, raising significant issues 

related to privacy, security, and equity in the handling of data. AI 

and ML applications are pervasive across numerous domains, 

leading to exciting new opportunities for modeling human health 

by unlocking previously inaccessible microbiome data as well as 

auxiliary genomic sequence data. The provision of these datasets 



 

Page | 88 

remains critically important to enable further experimentation 

using AI and ML methodologies, and datasets can be efficiently 

merged to enhance analysis. A central goal in optimizing 

microbiome health is to prevent the resuscitation and 

proliferation of harmful pathogens, particularly in sensitive 

environments. The deteriorating lung-care environment faced by 

patients on ventilators, when managed by healthy caregivers, 

significantly elevates the long-standing challenges associated 

with hospital-acquired pneumonia. The passive acquisition of 

pathogens from mortified skin surfaces, which reside on various 

human surfaces through bacterial, fungal, and spore attributes, 

necessitates the development of automatic alerts to maintain the 

safety and wellness of patients and caregivers, extending to the 

global community. Recent academic literature has been utilized 

to thoroughly assess the key drivers of AI and microbiome 

interactions across various disciplines. Ensuring regulatory 

compliance plays a crucial role in establishing retrospective 

national cyber assurance frameworks and guarantees high 

reliability for real-time alerts, thereby allowing for the retraction 

of non-compliant articles when necessary. Practical details of the 

implementation remain firmly on track with the overarching aim 

of facilitating the development of a working End-to-End live 

system that operates at human skin dimensions, ultimately 

benefiting all stakeholders involved [76, 77, 78].  

Toward fully personalized infectious disease care 

Infectious diseases pose a significant threat to global health, 

and antimicrobial resistance is threatening to render our most 

effective antibiotics useless. Many commercially available 

pathogen-detection methods still fail to identify the infecting 

organism more than 50% of the time, and diagnosis remains 

under-investigated compared to other medical specialties. As a 

result, critically ill patients are often started on empiric (guess) 

therapy that may be inappropriate. Infectious disease accounts for 
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more than 30% of patients who develop acute-on-chronic kidney 

disease due to nephrotoxic antibiotics. These, coupled with 

significant logistical or analytical hurdles, remain deeply 

understudied [79]. 

Precision medicine strives to identify the right treatment for 

the right patient at the right time. Competent models that address 

the time dimension are thus critically needed [57]. By combining 

traditional micro-biology with the latest advances in AI and 

biosensors, a fully personalized approach to infectious disease is 

slowly emerging. However, two major limitations hinder their 

clinical implementation: the absence of fully structured training 

datasets to build and validate reliable predictive models, and the 

need for extensive data pre-processing and a defined machine-

learning strategy at the implementation stage. 

Challenges and opportunities ahead 

Practical, ethical, and scientific challenges must be addressed 

to realise the full potential of microbiome-informed diagnostics. 

Advancing the microbiome field requires new experimental 

techniques, data types, and modelling paradigms. At the 

experimental level, more easily interpretable biosensors could 

reveal pathogen-specific signatures that other modalities fail to 

detect. Strain-resolved metagenomic data would clarify the 

precise roles of individual microbial members. Detailed host 

immune response readouts would directly link microbiome 

functions to infection and inform decoupled immune-targeted 

diagnostics. Multi-organ, interkingdom, or viral approaches 

could explore other parts of the body or different infectious 

agents to test for emergent phenomena through microbiome 

influences. Novel assay formats that non-invasively extract 

signals from unanticipated sources present interesting avenues 

for exploration. 

Regulatory demands for algorithmic transparency are rising 

significantly in tandem with the accelerated adoption of artificial 
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intelligence across various sectors and industries. One important 

avenue of this increased scrutiny focuses on the critical need for 

a broader and more comprehensive representation within training 

cohorts. This broader representation is essential to mitigate the 

risk of faction-differentiated rollout that may arise from biases in 

training data. To effectively address this challenge, proactive 

assessment methods should be employed to systematically gauge 

the generality of the underlying modelling assumptions, thereby 

identifying any remaining side effects that could potentially 

threaten equitable access to AI systems. Furthermore, 

interpretability techniques that trace model decisions back to 

specific input features are instrumental in allowing for thorough 

vulnerability checks and ensuring accountability. This process 

not only fosters greater trust in the classifiers but also unlocks 

crucial opportunities to delve deeper into understanding their 

operational principles. By committing to such precautionary 

readiness, stakeholders can ensure adequate preparedness for 

resource-limited scenarios. This includes exploring opportunities 

to streamline combinations of multisource inputs, enhancing 

overall system efficiency and outcomes. Additionally, it opens 

the door for potential redeployment of these algorithms for other 

microbiome-related applications, broadening the impact of AI in 

healthcare and related fields [80, 81, 82, 83].  
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Chapter - 16 

Conclusion 

 

 

A pandemic is a starting point for action but also an alarm bell 

for systemic transitions. Although it is impossible to predict 

whether such a drastic, yet necessary, transformation will occur, 

the experience of the COVID-19 pandemic has fundamentally 

altered perspectives on the impact of infectious diseases on 

society and the economy - on the micro-scale as well as the 

macro-scale. In the context of the human microbiome, 

pathogenic bacteria need to be tackled swiftly. The AI-based 

precision microbiome medicine and the AI-driven infectious 

disease diagnostic systems proposed in this research can serve as 

indispensable monitors, deterrent devices, rapid responders and 

precise protectors. They are of unprecedented importance in 

situations of growing antibiotic resistance, re-emerging 

infectious diseases and viruses incorporating bacterial systems. 

A third wave of dangers is propagating such infectious threats, 

and at the same time, rapidly communicating them through 

instant technologies intensifies their dissemination enormously. 

The combined authority of biotechnology and AI profoundly 

transforms international society. 
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