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Abstract

Microbial infections continue to emerge as a leading cause of
widespread morbidity and significant mortality on a global scale,
impacting millions of lives each year. Timely and accurate
detection of various pathogens is absolutely critical for ensuring
effective treatment options and for curtailing the further spread
of these infections within communities and populations. The
human microbiome-the incredibly complex collective of
genomes and diverse interactions of the microbial communities
that exist on and within the human body-plays a pivotal role in
shaping infectious disease dynamics and overall health
outcomes. The specific composition of the microbiome
significantly influences not only pathogen carriage rates but also
the intricate transmission dynamics and overall expression of
various diseases. However, the full predictive power of
microbiome data has yet to be completely harnessed for practical
diagnostic applications that could revolutionize patient care. This
groundbreaking work proposes an innovative modular suite of
artificial intelligence (Al) tools that are uniquely capable of
seamlessly integrating existing microbiome-disease knowledge
alongside a wide array of diverse multi-omic datasets. This
integration substantially enhances the overall identification of
viral, bacterial, and fungal pathogens, regardless of any previous
sequencing or culture results that may have been obtained in
routine laboratory practices. These advanced and sophisticated
approaches work diligently to accelerate the robust development
of crucial microbiome-informed diagnostic models. Such models
will take into account specific pathogen trajectories and broaden
the application of genomics-guided decision support systems
within the expansive field of infectious disease management.



Ultimately, this will lead to significantly better patient outcomes,
more effective public health strategies, and the potential to save
countless lives by addressing the challenges posed by microbial
infections more effectively 23,
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Chapter -1

Introduction to the Human Microbiome

The human microbiome refers to the collection of organisms that
inhabit the human body, which includes bacteria, archaea, fungi,
and viruses. These organisms colonize the skin, oral cavity, and
gut after birth and play important roles in bodily functions, such
as digestion and immune function. The microbiome contains
approximately 100 times as many genes as the human genome;
thus, it profoundly influences a range of biological processes.
Imbalances to health-promoting microbiome functions are
associated with numerous health issues, ranging from
inflammatory bowel disease, diabetes, and antimicrobial-
resistant infections. Systematic investigation of microbial
communities using high-throughput sequencing techniques has
yielded an extensive catalogue of species prevalent in diverse
human populations and has revealed how microbial community
composition changes from healthy states. The human
microbiome is an extraordinarily promising target for early
detection and therapeutic intervention.

The microbiome influences both the innate and adaptive
immune systems, which helps dictate the success of vaccine and
therapy responses. Specific immune-related signals generated by
the microbiota regulate front-line innate immune defences,
including the production of antimicrobial peptides and mucus,
and shape the composition and function of distinct CD4+ T
helper, regulatory T-cell, and T follicular helper populations.
Many of the same microbiota-derived signals and populations
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remain important for managing the severity of subsequent viral,
bacterial, and parasitic infections.

The literature describes observations linking shifts in
microbiome community structure to numerous health and disease
phenotypes. Healthy, disease-predictive, and infection-predictive
microbiota have also been associated with infections by species
such as Clostridium difficile, Pseudomonas aeruginosa, and
pathogens capable of causing sepsis. Pathogen-host-microbiome
triads have been defined to describe these interconnections % €1,

Overview of the human microbiome (gut, skin, oral, etc.)

Different ecosystems colonize the human body such as the
gut, skin, vagina, and mouth. The gut microbiome and its
functioning have been studied extensively and provide insights
into the ecological dynamics of the other ecosystems. The
dominant phyla in the gut are Firmicutes and Bacteroidetes, and
their relative abundance varies according to age, diet, and other
factors. Microbiome shifts impact the host’s health and are linked
to chronic diseases. Knowledge of the microbiota extends to the
skin and oral environments, and ongoing investigations continue
to explore these ecosystems. Microbiome disturbance is expected
to provide information about the health state of their
corresponding sites and other anatomical areas [ & 51,

Role in health and disease

Dysbiosis, an alteration in the composition of the microbiota,
is increasingly associated with inflammatory and infectious
diseases P°l. Rodent studies identified microbial community
changes linked with conditions ranging from obesity to stress,
while disease signatures have been connected with fibrosis and
Crohn’s disease in humans. Microbiota independence is defined
as the absence of assembly and functional correlation between
the gut microbiota and the disease. Immunological processes
triggered by microbiota can affect pathogen clearance, and a
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multi-kingdom docking model connects dysbiotic communities
to infection susceptibility. Several studies have generated
association maps that link communities, edge counts, and
genotype variations across major infectious diseases,
highlighting the early microbiota establishment window [°1.

Importance in immune system regulation

The human microbiota comprises a vast array of
microorganisms, including bacteria, viruses, archaea, fungi, and
microbial eukaryotes, and occupies all body surfaces. Despite
their small proportions, these microorganisms significantly
influence a wide range of physiological processes [°l. During
birth, the microbiota starts to develop based on maternal factors,
environmental exposure, and other factors. The configuration
continues to change throughout life, driven by many factors,
including  environmental, diet, antibiotics,  hygiene,
contraceptives, health issues, climate, and more. There is a need
to obtain high-quality and high-throughput metagenomics data to
predict the health status and health conditions of humans.

There are four critical and significant elements that must be
thoroughly considered when addressing any form of infection:
the pathogen, the host, the immune system, and the microbiome.
Of these, the dynamics of the microbiome surrounding infections
contain vital and essential information about both the pathogen
and the host. Gaining a deep understanding of these intricate
interactions, particularly in the periods before treatment initiation
and during the treatment process itself, can lead to innovative and
effective solutions aimed at improving infection control and
overall management strategies. The human microbiome is
currently studied in its entirety through a comprehensive
approach known as multi-omics, which includes metagenomics,
metatranscriptomics, metabolomics, resistomics, and various
other methods. This extensive research framework is employed
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to obtain as much detailed information as possible about a wide
range of certain medical conditions and diseases, enhancing our

understanding of how infections can be managed more
successfully [10: 11121
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Chapter - 2

The Era of Precision Medicine

Definition and evolution of precision medicine

A new generation of personalized frameworks divides
individuals into groups that share common features for
stratification and clinical decision support. Personalization now
extends beyond the genomics of single genes and diseases. A
growing family of signals, encompassing virome, resistome,
immunome, and metabolic features, together with artificial
intelligence (Al), excels at rapidly categorizing individuals and
calibrating treatment strategies for infectious pathogens. These
extensions complement precision medicine approaches and
surmount existing gaps in standard stratification systems, which
do not yet accommodate the diversity of pathogen, transmission
route, and clinical presentation arising from the same human
source 1,

Precision medicine is fundamentally about ensuring that the
correct treatment is delivered to the appropriate patient at the
optimal moment. However, traditional medical frameworks
frequently treat various pathogens, including fungal, viral, and
bacterial, in a somewhat undifferentiated manner. This lack of
specificity can lead to suboptimal treatment outcomes. In
contrast, precision microbiome medicine introduces an essential
new dimension by incorporating the microbiome into the
discussion. This approach offers a complementary and clinically
significant way to characterize the individual patient. It
emphasizes the critical role that the microbiome plays in
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modulating the body's response to various pathogens, ultimately
influencing treatment efficacy. By understanding these
interactions, healthcare providers can better tailor interventions
that take into account the unique microbiome composition of
each patient, leading to improved therapeutic strategies and
individualized patient care (3 14 15,16,

Integration with genomics and personalized healthcare

The diagnostics of infectious diseases have significantly
benefited from the integration of advanced genomic technologies
and-more recently-from a more expansive definition of precision
medicine that incorporates not only host and pathogen data but
also comprehensive microbiome data. During an outbreak of an
infectious disease, obtaining genomic sequence information from
the pathogen often takes precedence over the patient’s own
genomic data when it comes to determining the most appropriate
treatment strategies that can be implemented. A thorough and
detailed temporal along with spatial understanding of pathogen
transmission dynamics is also absolutely critical for designing
and implementing effective containment measures that can help
curb the spread of the disease. By utilizing pathogen genotypic
information for not just the diagnosis but also the treatment and
prevention of infectious diseases, it becomes possible to adopt
and implement personalized approaches that are strikingly
similar to those utilized in genomically driven precision
medicine. Technological advances in pathogen nucleic acid
extraction techniques and high-throughput sequencing methods
have enabled these innovative concepts to be seamlessly
translated into routine clinical applications. Moreover, the
incorporation of machine learning algorithms can further
enhance the accuracy and efficacy of these diagnostic methods,
leading to improvements in patient outcomes 17: 8. 19. 201
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Limitations of traditional one-size-fits-all models

Various definitions of precision medicine abound, yet they
emphasize personalization: diagnoses, disease mechanisms,
treatments, or intervention outcomes individualized to the
patient. The precision medicine framework is increasingly
embraced for infectious diseases, as artificial intelligence (Al)
augments stratification and decision-support capacities 2,
Traditional one-size-fits-all metrics, however, continue to
predominate in clinical microbiome diagnostics. Pathogen
acquisition risk, microbial community structure, and potential
therapy responses are a few characteristics presently modeled
with generic, population-averaged parameters [221,

These metrics-along with microbiome-guided pre-, pro-, and
post-antibiotic treatments-form the basis of many clinical
applications. Precision microbiome medicine addresses systemic
gaps in the individual-level diagnostic strategies available for
complex infections and other microbiome-influenced diseases.
For infectious diseases in particular, the objective is to
supplement current one-size-fits-all approaches with highly
controlled, individualized guidance that draws upon a richer
combination of microbial signals and attributes and encompasses
pathogen-screening activity [23 24 251,
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Chapter - 3

Infectious Diseases in the Age of Microbiome
Science

How microbiome imbalances contribute to infection risk

The human microbiome, the community of microbes
inhabiting the human body, governs numerous health aspects. A
balanced microbiome contributes to immunity, hosts pathogen
competition, and protects against infectious diseases.
Conversely, a dysbiotic microbiome disrupts immune
homeostasis, harbours pathogen reserves, and impedes
successful treatment. These imbalances partly explain the high
infectious disease burden, wherein existing pathogens exploit
medically privileged body parts to proliferate unchecked,
highlighting the need for improved diagnostics to aid efficient
decision-making. Targeting one of the foremost infection risk
factors, the World Health Organization selected pathogens
accountable for a significant global mortality share as the priority
list for diagnostic aid [ Such diagnostics favour the
identification of at-risk individuals over the pathogens directly
responsible for transmission.

Contemporary models in the field of microbiology suggest an
imbalance-competitor-restoration triad as a fundamental
framework underpinning the risk associated with pathogen
development. This triadic relationship illustrates how a dysbiotic
microbiota can lead to the elimination of competently controlled
bacteria, allowing for the unchecked proliferation of infection-
prone pathogens. Upon recruitment, driven by specific behaviors
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or environmental factors, a verified pathogen can proliferate
without effective natural competition. Several classical
examples, including notorious pathogens such as Clostridium
difficile, urinary tract infections, and sepsis, aptly illustrate the
complexities and nuances of this triadic relationship. These are
not merely isolated incidents but rather fundamental
representations that underpin microbiome-aware predictive
approaches in modern research. The explanatory frameworks
derived from these examples inform and guide the choice of
microbiome signals, which are closely associated with infection
risk. Furthermore, they illuminate the various modalities that
render the datasets amenable to machine learning techniques.
This involves methodically identifying the types of inputs
required, as well as the necessary properties that these inputs
should possess to provide accurate predictions and enhance our
understanding of pathogen dynamics in relation to the gut
microbiome 271,

Pathogen-host-microbiome interactions

Understanding pathogen-host-microbiome interactions is
crucial for the design of precision microbiome medicine
strategies. These interactions can be direct or indirect, are highly
dependent on host and microbiota characteristics, and influence
infection outcome. Understanding them helps to identify
microbiome-based diagnostic targets and informs the design of
microbiota-targeted infection prevention strategies. Two
classical infection prevention examples are C. difficile-
associated disease and uropathogenic E. coli (UPEC) urinary
tract infections (UTIs) 28, The microbiome protects against
recurrent C. difficile infection, while the presence of specific
commensal strains appears to protect against symptomatic UPEC
colonization. A third example highlights the potential use of C.
albicans to monitor the risk of sepsis due to dysfunction of key
bacterial genera [2% 15 13.30]
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Examples: C. difficile, UTIs, sepsis

C. difficile, UTIs, and sepsis have been extensively
investigated for pathogen-host-microbiome interactions, making
them ideal case studies to illustrate the contributions of
microbiome data to pathogen identification.

C. difficile, a common cause of antibiotic-associated
diarrhoea, has a complex relationship with the host and
microbiome. Antibiotic treatments can cause microbiome
dysbiosis, leading to C. difficile overgrowth and recurrent
infection. In cases of nosocomial C. difficile infection, strains
from environment-colonizing patients may establish secondary
infections in susceptible individuals. These infection cycles
highlight the utility of microbiome information in predicting
possible C. difficile infections, underscore the opportunity for Al
support, and demonstrate the complementarity of 16S and
metagenomic data !,

Urinary tract infections (UTIs) are among the most prevalent
hospital-acquired infections. The urinary microbiome varies
significantly among individuals, introducing the possibility of
microbiome-guided UTI diagnostics. Considering causality,
UTI-associated pathogens are likely to overpopulate the urinary
microbiome just before symptom onset. These dynamics
establish a clear target for predictive modelling of UTI risk and
demonstrate compatibility with 16S and metagenomic data.

Sepsis, frequently triggered by bacterial infection of the lung,
abdomen, urinary tract, or skin, is the most severe and lethal form
of hospital-acquired infection. The interplay among invading
pathogens, host immune response, and microbiome modulation
has been well mapped through microbiome profiling over the
disease trajectory.
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Chapter - 4

Microbiome Profiling Technologies

16S rRNA sequencing

Microbiome diagnostic applications of 16S rRNA data entail
amplifying and sequencing selected hypervariable regions of the
16S rRNA gene via polymerase chain reaction (PCR). 16S rRNA
gene amplicons are relatively resilient to storage conditions,
freezers, and thawing, allowing the use of samples archived from
polymicrobial soaking, dilute plating, and other preservation
methods B3, Certain physiological processes (e.g., antimicrobial
treatment) and lifestyle factors (e.g., diet, probiotics, and other
dietary supplements) curtail time windows throughout which 16S
rRNA data remain biologically relevant. A variety of database-
independent and database-dependent bioinformatic pipelines are
available to process and analyze raw 16S rRNA sequence data,
each with distinct performance characteristics, system
requirements, and available computational resources and
software.

The primary limitations of pathogen detection from 16S
rRNA data largely stem from the uncertain source attribution of
the microbiota that is being sampled and the imperfect selection
of the hypervariable region during the analysis process.
Sequences that are originating from pathogen 16S rRNA genes
occasionally fail to cluster effectively with adjacent terminal
restriction fragments in database-independent analyses, which
complicates the interpretation of the results. Additionally, these
sequences cannot consistently serve as reliable filters in
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database-dependent scenarios, leading to further complications
and uncertainty in the detection process. Furthermore, some
pathogen ribosomal operons may be found to differentiate
multiple copies of the 16S rRNA gene per genome, which means
that the compatibility with broadly useful bioinformatic
workflows continues to decline and poses challenges for
researchers striving for accurate pathogen detection. This
intricate  situation highlights the need for improved
methodologies in microbial analysis [32 33 341,

Studying microorganisms that inhabit natural environments,
extreme conditions, foodstuff, and living organisms has
fascinated scientific minds since Leeuwenhoek and Pasteur first
observed them. The microbiome refers to the microorganisms in
a given environment, the interactions between these
microorganisms, and the environment itself. The corresponding,
high-resolution characterization of all genomic material derived
from a community of microorganisms is defined as
metagenomics. Over the past two decades, advances in nucleic
acid-based sequencing technologies have inspired the
development of multiple microbiome-profiling methods; notable
progress among these scientific efforts has driven a surge of
microbiome research investigating host physiology, disease

aetiology, biogeochemical cycling, and ecosystem functioning
[1]

Microbial diversity and functioning can be assessed through
characterizing microbiome composition, metagenome content,
and metatranscriptome quantity. Characterization encompasses
ad hoc isolation plus cultivation or deploying cultivation-
independent approaches. The former relies on inoculating
specimens onto predetermined selective media and subsequent
growth to one or more colonies by free propagation. This process
broadly delivers the identity of predominant community
members using classical microbiological techniques and
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preserved isolates for further screening. Assembly and
reconstruction via currently available genome-resolved
metagenomics techniques can yield genome sequences for
suspected isolated microbiome members. Although these
pioneering methods have greatly accelerated the understanding
of microbial diversity and ultimately bacterial taxonomic
identification, taxonomic classification remains behind
biogeochemical, ecosystem-functional, and ecological-function
characterization of the microbiome [,

The term microbiome refers to all microbial genomes present
in a given habitat . A metagenome is the ensemble of all the
microbial genomes in a given community. It can be many times
larger than the metagenomes of individual taxa combined, due to
the presence of dissimilar and incomplete genomes. Community
profiling quantifies taxonomic or functional metagenomic
composition to assess community change. Profiling remains
popular because accessibility is high and complementary-current
sequencing costs favour larger numbers of samples over greater
depth, and light rain is straightforward to assess. Nevertheless,
specific analysis of metagenomic, metatranscriptomic, or
metaproteomic sequences gathers further insights of primary
ecological and molecular interest.

Microbiome-sampling efforts date back to 1991, when
microbiota-tailored nucleic acid extraction and amplification
lowered contamination and amplification bias risk. The Scientific
Foundation “Microbiology Grant No. 5905” propelled initial
extension of cultivation-independent specimen characterisation
beyond the 20-character ribosomal DNA target and machine-
learning Rectors towards comprehensive empirical water
characterisation through automated sequence-based extraction of
total and functional water profiles. The 1990s saw taxonomic-
objective 5S amplification-internal standards and custom
automated extraction-transcription-by-analytical copying of
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prev-XXXX removal proceed, followed by blend-in replacement
of macro-organisms by micro-organisms 12,

Microbial communities have colonized and influence
practically every ecosystem on Earth, impacting environmental
sciences, agriculture, and human health. The field of microbiome
science or microbiomics focuses on microbial composition,
diversity, and function as they interact with environmental
features. Microbiomics has become a large interdisciplinary field
incorporating microbiology, chemistry, metatranscriptomics,
metaproteomics, metabolomics,  cultivaromics,  ecology,
phylogenetics, systems biology, and much more. It is rapidly
growing, leading to a rise in novel analytical approaches to parse,
curate, and analyze multi-omic data. These tools and data-types
make it increasingly difficult to interpret, compare, standardize,
and benchmark the quality of data and methods in a consistent
way. These issues confound the ability to translate multi-omics
research into clinical applications. Precise computational
techniques are needed to process, normalize, and analyze
microbiomics datasets to support reproducible research into the
role of microbiomes in health and the environment.

Measuring the composition of a microbiome is addressed by
amplicon-based or marker-gene sequencing approaches to
perform a microbial census. The functional potential of a
microbial community can be inferred indirectly by marker-gene
surveys, or through direct observation of functional genes and
pathways by whole-metagenome sequencing  surveys.
Measurements of functional activity in a microbiome can be

derived through metabolomics, proteomics, and transcriptomics
3]

Amplicon sequencing of variable-length, hyper-variable
regions of the 16S rRNA gene or the internal transcribed spacer
regions (ITS) of rRNA operons allows assessment of microbiome

Page | 14



taxonomic composition in a single PCR amplification ™. In
particular, choice of 16S rRNA-targeted primers influences
microbiome composition estimates, especially in prior samples
that lacked enriching bias control. Both amplicon length and
choice of ITS region shape community structure recovery. Use
of variable-rich regions or super-primer strategies enhances
bioinformatic usability but amplifies primer-specific recovery
bias. Finally, incomplete 16S rRNA-containing genomes and
tRNA-rich regions in some groups impede precise quantification
of taxonomic units at certain levels.

Metagenomic shotgun sequencing of environment origin
nucleic acids enables un-biased analysis of taxonomical and
functional genomic constituents. For assemblages comprising
only one or a few organisms, efficient full-genome assembly
permits taxonomic identification and functional-potential
characterization. From nucleic-acid extraction to sequencing in
less than six hours and total recovery of high-throughput
sequencing generated data and clustered communities, a simple-
deduplication approach competes with premature and sample-
bias-propagating 16S rRNA gene-targeted strategies. Since
shotgun-microbiome construction nor recovery steps guarantee
assembly-continuity, metagenomic community data serve as
operational taxonomic unit presence-absence tables, like
amplicon-16S  profiling. Nevertheless, relative-abundance
unaffected by initial-microbiota complexity, origin exclusion, or
cell-growth altering extraction methods still observes
reproduction of previously claimed temporal and site-variation
observations at phylogenetic and metagenomic-eubacteria
resolution.

Amplicon sequencing technology has played an essential role
in profiling the composition of microbial communities and is thus
a widely applied method for microbiome studies. The general
principle of amplicon sequencing is to generate sequencing
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libraries through the amplification of specific regions of interest
via the polymerase chain reaction (PCR). For microbiome
analysis, the most commonly targeted regions are portions of the
16S ribosomal RNA (16S rRNA) gene for bacteria and archaea,
the internal transcribed spacer (ITS) regions for fungi, and other
specific loci for other microorganisms. Amplicon sequencing
delivers a high level of accuracy for characterizing microbial
community composition at the phylum and genus ranks. The
chosen marker region clearly determines the maximum
taxonomic resolution that can be achieved and different regions
generate various coverage biases and taxonomic markers, which
can lead to dissimilar community structures when identical
samples are characterized. Extensive studies have validated
amplification primers for different marker regions, improving
taxonomic coverage and minimizing bias. The U.S. National
Institute of Health has established a 16S rRNA gene sequencing
protocol, with widely adopted primers to amplify a region of
approximately 500 base pairs Bl Specific protocols for
eukaryotic ribosomal RNA and second-generation sequencing
technologies have been developed, enabling the characterization
of various microbiomes, including soil, rhizosphere, and plant
samples [®1. A distinct aspect of amplicon sequencing lies in its
filling-sequence capability, where a central region remains
unblocked and elongation can proceed, allowing multiplexing
with various barcodes and the generation of sequence data for the
forward and reverse primers 7],

Profiling methods based on metagenomic shotgun
sequencing collect nonspecific gene- or taxon-centric data
without relying on amplification of target gene sequences. The
functional composition of the healthy microbiome as well as
shifts associated with various diseases, especially within the gut,
are now approaching cross-sectional completeness. These data
underscore the importance of sequencing depth, which should be
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calibrated according to desired resolution at the functional as well
as taxonomic physiotype level. Collectively, however, major
shortfalls still need to be addressed ahead of microbiome-guided
diagnostics or therapeutics, including link-from-function to
health and disease states, extensive accuracy validation of
functional predictions, improved representation of species from
underrepresented phyla in reference collections, and integration
of diverse other -omic data layers.

Temporary sampling may also enable metagenomic shotgun
sequencing of short, low-budget, or easily cultured investigations
of portable devices such as eDNA cages or automated ultrasound
systems. Nevertheless, outside these highly constrained
conditions, the accumulation of public sequencing data currently
far outweighs that of public raw short-read data, and the
development of tailored portable devices with proven
comparative classification performance has not yet kept pace. For
amplicon sequence classification, accurate training and testing of
machine-learning classifiers remains critically dependent on the
incorporation of commercial Noise-Nextclade cloud support and
detected bias or limitation zones.

Of diverse microbial phyla present in the gut, only a small
fraction is usually active, though activity levels vary among
individuals. Functional characterizations solely based on
metagenomic data may therefore be misleading. Capturing gene
expression profiles through metatranscriptomic sequencing
determines whether particular species and functions are actively
expressed. Information on transcript levels further enables
inferences about the relative activity of organisms and pathways
within the community [l Integration with metagenomic,
metaproteomic, and metabolomic datasets allows reconstruction
of the complete microbiome activity biocycle, wherein gene-
centred analysis highlights transcripts governing degradation,
turnover, or absorption of specific substrates; metabolomic data
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indicates substrate supply; and metaproteomic observations
provide complementary, verification-oriented support for
genome-centric interpretations 1,

Proteomic and metabolomic data augments gene-centric
activity inferences by providing a pathway-level view of
microbiome functioning. Metaproteomics resolves the highly
multifactorial taxonomic diversity of microbiomes but, due to
high costs and other technical constraints, remains relatively
niche. Metaproteomic-based profiling attempts have been
attempted in marine ecosystems and associated with disease
recovery transitions in biological wastewater treatment plants
utilizing a diet shift to gluten-free food and reducing transplant-
associated diarrhea incidence. Such focused applications may
become more common as methods are continuously refined and
an increasing body of publicly available sequence databases of
noncultured microorganisms accumulated. Integrative studies
comparing existing metabolomic profiles with metaproteomic
data may also help identify the specific bacterial activity in
metabolic reprogramming.

Third-generation sequencing methods and nanopore
sequencing devices offer the unique ability to sequence nucleic
acids in real time and generate ultra-long reads of hundreds of
kilobases or even megabases that can completely span entire
plasmids. The ultra-high temporal resolution offered by portable
sequencers enables point-of-care microbiome profiling for
various clinical and non-clinical applications. Such hold time
resolution capability has the potential to provide relative
quantification of rapidly growing bacterial pathogens in
screening samples for wound infections and urinary tract
infections at point-of-care. The success and deployment of these
technologies, however, remain constrained by sequencing error
rates, particularly with nanopore sequencing, potential
amplification bias during library preparation, and the relevance
of sequencing readout for clinical decision making.
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As a conceptual extension of metagenomic shotgun
sequencing, Hi-C-an approach originally designed for intact
eukaryotic genomes-enables genome-resolved metagenomics to
aggregate fragmented prokaryotic assemblies into genome bins
by inferring proximity from, for example, unique read pairs and
mate pairs that originate from the same genomic locus 19,
Metagenomic assemblies, therefore, can be linked spontaneously
into genome bins through Hi-C or cross-platform technology
combinations (e.g., PacBio long-read assemblies linked with Hi-
C). A linked assembly or binning scheme clarifies subsequent
interpretation by delineating which loci coparticipate in the same
biological cycle. Access to, or interpretation of, Hi-C data may
benefit from referring to ‘Metagenomic shotgun sequencing’ and
‘Hi-C and genome-resolved metagenomics’ when strategies
aiming for multiple information layers are considered [,
Technologies for single-cell genomics can likewise pinpoint
biological activity in specific community members, yet highly
targeted amplification schemes usually yield limited genomic or
transcriptomic input per event, imposing throughput/cost trade-
offs on larger collections. Conveying single-cell approaches is
enhanced by two-way cross-referencing with ‘Metagenomic
shotgun sequencing’ and ‘Single-cell genomics’ to highlight
similar target organisms or complementary interpretative
architectures.

All Hi-C experiments are based on the creation of large
chimeric DNA molecules. Individual genomes are cross-linked
to preserve their spatial organization. Genomic DNA is then
enzymatically fragmented and biotinylated. Biotinylated ends
from different DNA fragments are subsequently joined together,
forming a mixture of endogenous chromatin molecules. A
sequencing library is prepared and sequenced, and the resulting
chimeric reads provide information about relative proximity
between DNA loci. When the process is performed on bulk
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microbial communities, the mixture consists predominantly of
DNA from multiple organisms. The participating species can be
identified, and the likelihood of interconnectedness between each
set of two taxa can be quantified. This type of information is
exploited in MetaHiC to cluster or bin contigs . Clustering
combines contigs into groups preferentially containing several
pieces from the same organism, while binning assigns individual
contigs to distinct taxa groups. The approach does not yield
complete genomes but enables the accurate reconstruction of
substantial portions of tens to hundreds of individual genomes
[121 Meta3C, a variant of Hi-C targeting only a few abundant
species, allows complete genomes to be assembled from highly
complex communities 3. A major limitation of metagenome-
analysis approaches characterized by unconnected contigs is that
two separately binned pieces may originate from the same
genome, leading to misinterpretation of evolutionary and
ecological processes. Various concepts related to community
assembly, multifactorial analysis of community distance metrics,
evolution of mobile genetic elements, community-wide
phylogenetic trees, and metabolic networks depend on the
presence of contig connectivity. These Hi-C methods solve the
long-fragment problem addressed by other approaches, which
generally output shorter contigs at more moderate coverage.

Xenobiotic degradation, plant nourishment, and even
pathogenesis are influenced by ecological interactions of
anaerobic arginine-degrading bacteria in anaerobic wastewater
treatment systems. Inactivated catabolism or microbe-microbe
cross-feeding of aromatic amino acids impedes anammox.
Environmental sciences and bioremediation strategies targeted at
small deodorizers, paints, rubber, pharmaceuticals, personal-care
products, or household products are consortia comprising
hydrocarbon-degrading Bacillus, corynebacterium, cometabolic
Rhodococcus and Gordonia, and aromatic-compound-attaining
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Microbacterium.  Microbiomes of synthetic-biodegradable
polyesters characterized. Use of bioplastics and biodegradable
plastics naturally derives from carbon-neutral alternative
substrate or, more generally, nonpetroleum feedstock. The
economical sustainability along with contamination of such a
system where co-incorporated plastic-fixating bacteria 4
improves aerobic degradation of polylactic acid versus using a
species amalgam without, can be a promising prospect.

Emerging platforms for profiling microbiomes and
ecosystems embrace several concepts, including community
composition and gene function, through many promising
investigational approaches. Nano- and third-generation
sequencing technologies offer compelling advantages for
microbiome and ecosystem profiling, including much longer read
lengths and real-time data acquisition. Current applications
encompass whole-community profiling in water and soil
samples, targeted analysis of clinically relevant pathogens in
human and food samples, portable epidemiological analyses for
airborne SARS-CoV-2 data in public transportation, and early-
stage study of the oral microbiome. Numerous limitations
remain, including limited depth and bioinformatic analysis
capabilities, and concurrent validation with established platforms
is essential for method and data interpretation.

At the cutting-edge of sample handling and analysis, portable
or point-of-care profiling technologies have received rising
interest. Recent applications employ a wide range of sequencing
technologies, including second-generation nanopore sequencing
combined with portable personal computers to explore oral
microbiomes and microbial links between electric vehicles and
underground electrochemical environments. While the market
for pack-sized benchtop sequencers has grown rapidly in diverse
laboratories, read length and sequencing throughput remain
paramount. Most applications rely exclusively on long-read
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sequencing, on which extensive genomic and transcriptomic
analyses have focused, and many established protocols remain
fruitful solo endeavours 11,

Emerging nano- and third-generation sequencing platforms
that offer long read lengths and continuous data acquisition open
new opportunities for portable, point-of-care microbiome
profiling. Third-generation sequencing platforms produce reads
up to 20 kb long, facilitating assembly of repetitive regions and
structural variation. These sequencers provide rapid, real-time
data in a compact, easy-to-use format, critical for outbreak
surveillance or ecological ~monitoring.  Bioinformatics
frameworks such as MinlON2Metagenomics streamline analysis
by translating raw signal data into fastq files for taxonomic and
functional characterization [, Last-generation platforms
integrate sequencing, amplification, and library preparation into
a single disposable flow cell capable of on-device analysis and
display].

Portable and point-of-care microbiome profiling. Current
ultra-short and portable DNA sequencers present enticing
opportunities for portable and point-of-care microbiome
profiling. Potential case studies include human microbiome
analysis and monitoring of environmental microbiomes in cases
of predecessors to pandemics. The technique remains in its
infancy and requires further validation before practical
applications can be safely considered.

Emerging third-generation sequencing technologies, such as
those from Oxford Nanopore and PacBio, offer read lengths up
to 100 kbp and the distinct prospect of real-time access to data.
Although nanopore sequencing is currently associated with lower
throughput and higher error rates than Illumina sequencing, a
considerable number of study designs are compatible with a
trade-off between immediate data access and other metrics [+ 16}
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Taxonomic classification refers to the computational
assignment of observed sequence-based operational taxonomic
units (OTUs), unsequenced reads, or metagenomic contigs
(metagenome-resolved coverage) to biological entities at a
specified taxonomic clade level 71, Generally, classification
aims to satisfy a specified relative accuracy criterion while
optimizing for coverage and computational efficiency.
Functional annotation denotes the assignment of observed
sequence-based sequence features or metagenomic contigs to
statistical models of putative biological functions, with a possible
secondary goal of pathway inference. Comparative analysis
refers to the derivation of statistically significant differences in
taxonomic or functional profiles from two or more groups of
community profiling samples, subsequently characterized by
associated metadata [*81. Longitudinal analysis designates the
extraction of statistically significant changes in taxonomic or
functional profiles within the same community profiling sample
over time. Data integration involves the combination of
correlated measurements from distinct community profiling
datasets acquired at the same time and environment or from
different but temporally matched instruments. These
considerations are closely related to the design of experiments
and interpretation of results, which incorporate a wide variety of
interdisciplinary factors. Despite the availability of data
integration across omics layers, taxonomic classification remains
the major enrichment and exploratory analysis complement for
amplicon  datasets, and cross-sectional metagenomics
subsequently suggests gene-level functional insights about
bacteria in subgingival plague microbiomes without accessibility
to direct metagenomic reads.

Taxonomic classification is the assignment of sequences to
taxonomic groups according to a reference database of similar
sequences. Clade resolution extends classification by assigning
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each group to a clade in a hierarchical phylogeny that may not
correspond to the taxonomy of the reference database.
PhyloRelief identifies taxa that distinguish different sets of
metagenomic samples °1. To overcome reliance on an external
taxonomy, it applies phylogenetic relationships of the taxa
contained in the reference database to group them into clades and
ranks those clades according to their contribution to sample
differentiation.

Taxonomic classification of microbiome community profiles
is frequently combined with functional annotation of the
corresponding metagenomic samples. In this case, activity
profiling focuses on metagenomic features, whereas pathway
inference seeks to establish links between functional modules.
Comprehensive comparative analyses-including longitudinal
studies-are essential to reveal community dynamics associated
with a given condition. These inferences can be enriched through
integration of cross-omics data, such as multi-kingdom
metagenomes and metatranscriptomes, metagenomes and
metaproteomes, or metagenomes and metabolomes. The
resulting views of community activity are complemented by
complementary microbiome studies, including systematics,
amplicon library profiling, and shotgun sequencing of purified
genomes from single cells or contiguity-based linking of Hi-C
clones from cultivated resources 1.

Functional gene annotation and metabolic pathway inference
employ various bioinformatics approaches, each with unique
strengths and limitations. Existing metabolic databases, which
assign functional annotations to genes, provide a simple but
imperfect means of inferring pathway-level functional potential
across a community. More advanced methods, such as Kaiju and
DIAMOND-based approaches, enable clade-specific functional
annotation, while functional network construction scaffolds
subsequent activity-driven analyses. Gene set enrichment
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analysis and pathway activity score calculation provide
inferential shortcuts based on known biological activity across
the metabolites represented within a profile.

In addition to kingdom-level detection of eukaryotic
sequences, clade-specific annotation approaches add ecological
value, especially where cryptic Eukaryota are present. Despite its
biological complexity, the functional properties of the eukaryotic
community remain less actively interrogated than their
prokaryotic counterparts. Metabolite profiles have been applied
to such communities, but derived pathways often represent basic
building blocks of life. For investigations where the metabolic
profiles of Fungi, Animalia, Archaea, or other kingdoms are key,
a clade-resolved activity-framework combining multiple -omic
layers would provide superior interpretive resolution. Attributes
essential for comparative or longitudinal analysis of
metagenomes and their  functional signatures across
environmental or health-related samples are also vital for
evaluating temporal shifts during targeted time-series studies.
The inferred function of integrated-deep sequencing-based
profiles can be strengthened through deliberate connection with
periodic -omic reports.

Compiling microbiome data into regulatory frameworks that
enable comparative and longitudinal analyses further enhances
their interpretive value [, Taxonomic classification-the
assignment of each sequence to a lineage based on similarity to
reference databases-provides the foundation for such analyses.
Phylogenomics links sequence information to a structured
reference tree. Microbiome profiling generally introduces
sufficient diversity that metagenomic assemblies reliably recover
core isotopic units from an emerging set of Universal Common
Ancestors M. Sequence similarity within these January 18, 2021
83 Assemblers 78 frameworks helps establish ignorance of
sequencing condition and preserves core insights even when
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taxonomies switch or evolve. Several systems now enable core
facility access to phylogenomics, providing a viable technical
option for microbiome datasets.

Another widely used facility targets functional
characterization, assigning sequences to gene families based on
their sequence and motif similarity. This approach, however, can
obscure biological specificity because gene families are
generally broader than the equivalent lineage measures already
deployed. Instead, statistics on the component building blocks of
assembly and their shared compositional patterns within
individual contigs or fragments-abundance stratified by building-
block oligo-length or other widely varied building-block plug-in
token frequencies-better capture the sameness of isolative
specification for subsequent Rousseau or other ulterior
exponential growth modelling. Supporting data on biomass per
strand conversion keeps metagenomic calculation simplicity
while directly linking back to building block oligo stepping
lengths and their size-discrepant active-rich group generators,
ultimately probing a remaining proxy of equivalent isolation
beyond banded whole-probe embedding for cross-core inter-
system insights.

Simultaneous profiling of multiple biological layers presents
opportunities to decipher complex community interactions, yet
straightforward methods for integrating info across diverse -
omics types and longitudinal datasets remain scarce. Popular
approaches incorporate metagenomic and metatranscriptomic
data. Transcript/gene ratios indicate transcriptional activation or
repression of particular genes; a metagenomic database assists
metaproteomic protein identification; and gene
abundance/proteomic  activity connections emerge when
comparing shotgun metagenomics with metaproteomics. Foxtail
millet rhizospheric soil and microbial communities tagged with
metagenomics plus 16S rRNA amplicon sequencing enable co-
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variation exploration of microbial functions and 93
environmental factors 2%,

Integrating multi-omics data across different biological
layers helps characterize a microbiome’s collective function and
metabolic activity. Such integration is crucial for diseases-e.qg.,
Type 1 diabetes, diabetes, or inflammatory bowel disease-that
exhibit microbiome alterations unlikely linked to single bacterial
species or individual molecules. Because 16S rRNA/ITS
amplicon sequencing and shotgun metagenomics continue
driving microbiome analyses, assemblers and pipelines tailored
to long reads, multi-omics compatibility, and specific -omics
combinations are in demand [241,

Human health is tightly integrated with microbiome
composition and status. The gut microbiome of individuals
suffering from inflammatory bowel disease, irritable bowel
syndrome, or obesity exhibits notable deviations from healthy
counterparts. The oral microbiome serves as a reliable indicator
for periodontal disease and certain systemic diseases. On the
skin, elevated allergen-specific immunoglobulin E and disease-
indicative inflammatory cytokines correlate with eczema-
associated communities [*1. Specimens of the gut, oral cavity, and
skin deliver sufficient microbial DNA for various profiling
approaches.

Profiling methods have unique strengths and weaknesses for
health-related  diagnostics and therapeutics. Amplicon
sequencing, a cost-effective option with limited taxonomic
resolution, proves suitable for the gut microbiome; oral and skin-
site profiling require shotgun metagenomic sequencing or
higher-precision approaches. Shotgun and full-length 16S rRNA
sequencing are deployable across all body sites; the former is
favored when functional insights are beneficial or for systems
exhibiting substantial strain or genus diversity. Combinations of
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amplicon and shotgun sequencing leverage the former’s low cost
with the latter’s functional characterization and strain-resolution
potential. To develop microbiome-guided diagnostics and
therapeutic microbial applications, accelerated R&D cycles
demand integrated amplicon sequencing and shotgun
metagenomics complemented by cultivability and resistance
profiling.

The gut, however, is the best-studied human microbiome,
changing over periods of days, childhood, and aging and in
response to diet or illness. It is modified in unknown ways by
travel, chemical additives, and antibiotics 221, Although no two
people share identical microbiota and microbiomes vary between
host species, studies of wild-type vertebrates such as mice and
zebrafish have identified similarities in microbiotic function and
host interactions. Germ-free organisms have elucidated the
microbiota’s roles in maturation of the immune system and,
surprisingly, anatomical development of the intestine.
Gnotobiotic systems in which an organism’s natural microbiota
are replaced with the human analog are also being used to study
the phenotypic consequences of controlled perturbations. High-
profile demonstrations of this technique include an ongoing
investigation of the microbiome in obesity.

Growing interest in the microbiome and its association with
human health and disease has resulted in characterization of the
gut, oral, and skin microbiomes across numerous diseases,
enabling microbiome-guided therapeutics and diagnostics.
Example disease states include irritable bowel syndrome or
Crohn’s disease, where fecal microbiome transplant using
metabolites as functional proxies shows therapeutic effects;
periodontitis, which can be diagnosed based on the oral
microbiome; and skin diseases like atopic dermatitis and
psoriasis, which display dysbiosis patterns. Guided by these
associations, amplicon sequencing mainly targeting 16S rRNA
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and general function primers has been the dominant method due
to its cost-efficiency and applicability in population-scale
studies. However, detection of these associations requires high
sequencing depth to discover rare taxa, and the limited resolution
of the 16S rRNA marker leads to false-positive signals. As a
result, long-read metagenomic shotgun sequencing is being
applied to disease cohorts and proposed as the standard for
microbiome-characteristic studies.

Recent advances in culturomics, machine-learning-based
classifiers, and standardization approaches are further improving
the resolution and reproducibility of microbiome diagnostics.
With these developments, the gut, oral, and skin microbiomes are
showing connections to medicine, forensic science, nutrition, and
personalized medicine, and the resulting products are starting to
reach the consumer market.

Agricultural microbiomes include those associated with soil,
plants, and animals. Seed and root-associated microbiomes are of
special interest because they affect plant health and influence the
microbiome assembly of tissues further downstream @71,
Microbiome monitoring of wastewater treatment processes and
ecosystem surveillances can inform decision-makers and guide
public policies on water safety, pollution, and ecosystem health
23] Soil contamination and the loss of soil biodiversity through
erosion compromise nutrient cycling and crop yields. Monitoring
microbial community diversity helps identify best practices for
soil maintenance.

Plants form associations with diverse assemblages of
microorganisms that affect growth, nutrient acquisition, and
resistance to biotic and abiotic stress. A large proportion of
rhizosphere-associated bacteria neatly establish microscale
biofilms on root surfaces, which contain active colonies. In roots,
endophytic communities thrive in tissues such as epidermis and
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hairs, while other locations remain inaccessible due to highly
impermeable barriers. Disentangling individual metabolic
contributions in plant-associated microbiome species is difficult
but crucial due to often subtle phenotype effects and multi-
species dependencies. As single-cell transcriptomics enables
large-scale genome-wide exploration of individual microbial
functions in plants, the bottleneck remains studying complex
whole-community transcriptomes that obscure species-level
functions 241,

Biota regulate essential ecosystem services in soil. Changes
in these processes affect terrestrial C stores and aggravate climate
change. Nutrient availability and plant growth are crucial for
sustainable agriculture worldwide. Biogeochemical cycles of C,
N, P, K, S, and Fe dominate nutrient saturation in soils. Soil
microbiomes participating in these cycles span diverse genera
and species that remain poorly understood across multiple
systems. Tracking phylogeny, composition, and structure in soil
microbiomes is vital for managing ecosystem health and
agricultural  productivity. Temporal variations in soil
microbiomes remain understudied, impeding understanding of
their public health impact and isotope technology for ecosystem-
wide nutrient cycles at species resolution. After experimental
separation of microbial fractions and nano-enrichment of
genomes, high-throughput sequencing characterizes plant-
associated organisms and explores direct roles in mineral-
weathering and gas-fluxes across soil microbiomes [?°1,

Historically, microbial parameters have been used to monitor
environmental pollution since the 1980s, focusing initially on
drinking water quality. These early frameworks were rooted in
the fact that aquatic ecosystems of concern were generally
subject to unprocessed faecal discharges or uncontrolled
effluents from large wastewater treatment plants (WWTPs). In
the intervening decades, specific bioassays based on the
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physicochemical changes caused by one or multiple toxic
chemicals, along with whole-cell biosensor devices employing
living organisms for biological anal - yte detection, have become
available. Bacteriophages and viruses have also been moved into
the spotlight as highly appealing proxies for wastewater tracking
and control. Detection methodologies for enteric pathogens have
evolved to increasingly sensitive nucleic-acid-based methods,
primarily quantitative PCR 261,

Nonetheless, these methodologies suffer from limitations that
hinder the identification of sources and the assessment of
pollution state. False positives may arise from the persistence of
non-viable cells or naked DNA in water samples. Viable but non-
culturable states may not be accounted for. Meanwhile, constant
exposure to a major stressor can drive the loss of essential
pathogenic traits, and toxic organic pollutants have been shown
to accelerate plasmid loss. One of the main challenges is
therefore the development and implementation of sensitive in-
field monitoring tools for pollutant impact and sublethal effects.
Within eco-toxicology, much of the methodological innovation
has focused on advanced molecular frameworks-particularly
those that fill the gaps left by classical microbial techniques-
designed to clarify the principal drivers and pressures acting on
aquatic ecosystems 1271,

Technical considerations in microbiome profiling center on
three factors: sequencing depth, sequencing cost, and desired
resolution. The deeper the sampling, the more comprehensive the
coverage of both abundant and rare taxa ™. On the practical side,
strategies exist that make shallow profiling viable when the
budget does not allow extensive community surveys. This is
especially true in environments in which only a fraction of the
present taxa is expected to be in the samples. In such cases, the
cost of sequencing can be kept low while still providing content-
rich, informative community coverage. Sequences illuminating
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the relevant community structure can return larger insights than
an ill-planned or poorly designed high-coverage survey.

Microbiome profiling is characterised by practical trade-offs
between sequencing depth, overage, cost and information
content. Microbiome studies typically contain many samples,
each of which can be characterised by low-cost, low-depth
shotgun sequencing at~101-105 reads per sample. Lower
sequencing depth does not necessarily entail lower information
content; at full width, the information content of shallow shotgun
metagenomics studied at~ 103 reads per sample ends to be
greater than that of deep amplicon sequencing. Cost-effective
amplification-free and primer-free approaches to mapping the
microbiome are expected to become increasingly feasible to
complement amplification-based strategies.

Sample numbers and sequencing depth strongly determine
cost per sample. For microbially dominated samples, deep single
genome and multi-genome shotgun sequencing of ~ 105-107 3 -
HTs or <104 3 -HTs are typically applied, respectively, to obtain
many large, isolated genomes and maximise information 1281, 107
whole-genome shotgun reads provide about the same
information as<106  metagenomics 2-HTs.  Similar
considerations also apply to metatranscriptomics and when data
on proteomics or metabolites can directly address microbiome
questions.

The microbiome is the collective assemblage of
microorganisms in a defined environment, particularly the
human body . Characterisation of an individual’s microbiome
raises privacy concerns because such information has the
potential to reveal sensitive data about the individual.
Microbiome information may serve to further elucidate an
individual’s susceptibility and predisposition to disease, linking
such information with factors like obesity that are already well-
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studied in the field of human genomics. As many diseases have
a clear microbiome signature, like inflammatory bowel disease,
microbiome measurements could also inform on a patient’s
future health trajectory. The concern is amplified by the fact that,
alone, information concerning an individual’s genetic makeup
does not allow precise and comprehensive estimation of a
person’s life expectancy or likely future health conditions.
Microbiome-based information, on the other hand, especially
when merged with genomic data, could lead to even more
informed and possibly harmful insights about factors such as
socioeconomic status and exposure to certain geographical areas
and countries. Such data could lead to a more granular and even
discriminatory understanding of a person’s microbiome; in some
societies, predictions about one’s caste or class could be made
based on the information potentially contained in microbiome
analysis. A further level of complexity accompanies the domain
of participatory research and citizen-science projects. The public
may be willing to participate in such frameworks, willing to
contribute to art, science, or other realms of knowledge. But there
are still challenges: individuals may cede control over their data
but remain highly concerned about how it is to be used
subsequently 2%, Finally, there are still pressing issues regarding
equity. Microbiome research and understanding has advanced
rapidly in developed parts of the world without engaging directly
with work conducted elsewhere. Microbes shape human health
and human health shapes microbial evolution. Consequently,
research conducted in a global context cannot be concerned
solely with one region. To aid in sustaining the necessary
equitable flow of funding between regions, projects need not be
exclusively urban-centric; smaller communities can also form
rich veins of scientific study and discovery, permitting a “many-
to-many” approach to research strategies. Highly localised
efforts with several active research connections can therefore
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facilitate patterns of outreach and collaboration across
increasingly broad networks. To engage on a wide scale with
entirely different ecosystems, data-sharing protocols remain
essential. Maintaining respectful values around the flow of
information - whether scientific, political, social, or cultural - can
nurture and safeguard the multifaceted process of building
competency and understanding.

Despite widespread interest in microbiome research,
reproducibility remains a critical issue in sequencing studies.
Disparities in the taxonomic or functional profiles of nominally
identical samples can emerge from even minor variations in
preparation or sequencing protocols [, To address these
challenges, it is essential to systematically document input
material properties, wet-bench steps, sequencing methods, and
bioinformatics analyses. Control reagents, such as mock
communities, enable labs to characterize protocol performance
and monitor consistency throughout the workflow B,
Community profiling thus reflects shared technical and ethical
considerations in biotechnology, where data privacy and
equitable access must accompany scientific advancement.

Microbiome profiling continues to evolve at a rapid pace, and
several core themes emerge from the progress to date. First, the
spectrum of available technologies and methods has matured
greatly, addressing the desiderata identified in recent surveys [
and meeting specific needs in response to emerging biological
questions. Second, the integration of longitudinal and cross-
omics datasets is gaining traction and increasingly informing
microbiome studies, while ongoing efforts to establish clearer
standards and protocols will continue to enhance comparability
and reproducibility [7. Third, tomorrow’s microbiome
innovation will follow the trajectory of today’s research,
concentrating on more elaborate applications in environmental
monitoring, wastewater surveillance, and agriculture, targeting
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both fundamental understanding and preventive or therapeutic
options.

The transition from discovery-driven to implementation-
oriented microbiome studies entails a fresh examination of
technical and ethical considerations. As the range and
sophistication of profiling technologies broaden, careful
attention to privacy, consent, and equitable access will help build
and sustain public trust, while standardization of procedures and
documentation will facilitate responsible stewardship and
dissemination of information. Throughout this international
effort, the microcosm of the microbiome remains a constant
source of wonder, reshaping planets, transforming ecosystems,
and influencing processes and evolution on scales far beyond
what any individual species can accomplish.

Metagenomics and metatranscriptomics

Metagenomics enables a comprehensive analysis of all
microbial DNA present within a given sample, providing a broad
and detailed view of the various constituents, communities, and
functional potential of a complex microbiome. Similar insights
can be gleaned from metatranscriptomics, which specifically
focuses on the diverse RNA repertoire. Both of these cutting-
edge techniques represent immensely powerful tools for
understanding the intricate influence of the microbiome on
overall health and for feeding advanced predictive models aimed
at diagnosing or anticipating infections effectively. Combining
the insights gained from these methodologies could lead to
groundbreaking advancements in microbiome research and its
applications in healthcare [,

Multi-omics integration

Integrating data from multiple omics technologies, including
genomics, transcriptomics, proteomics, and metabolomics, offers
a much more comprehensive and nuanced understanding of
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overall biological states. This integration is crucial as it enhances
the interpretation of host-microbiome interactions, leading to
insights that are not possible when examining any single layer of
biological information alone. Precision microbiome approaches,
therefore, necessitate a sophisticated data fusion process that
harmonizes diverse molecular profiles from these omics layers,
creating a more complete picture of biological systems. For
instance, a study conducted by Heintz-Buschart et al. explored
patients suffering from type 1 diabetes utilizing a combination of
metagenomics, metatranscriptomics, and metaproteomics
techniques. Their findings from metagenomic sequencing,
interestingly, showed that there were no significant shifts found
in the microbial composition following the onset of the disease.
However, the transcriptomic analyses conducted as part of this
comprehensive study revealed noteworthy insights, specifically
an enrichment of differentially abundant transcripts during this
condition. These findings underscore the importance of
integrating multiple omics technologies to capture the
complexities of biological responses accurately. Similar guiding
principles have shaped additional research efforts that integrate
recoverable gut microbiome functions with various other
modalities, aiming to model intricate multi-omics association
patterns effectively. More broadly, machine-learning methods
have been increasingly applied to both evaluate different multi-
omics data integration techniques and develop cohesive
strategies that explicitly incorporate biological knowledge, thus

facilitating richer analyses of complex biological systems [3° %
37]
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Chapter - 5

Al in Infectious Disease Diagnostics

Machine learning vs deep learning approaches

Machine Learning and deep learning are prevalent
methodologies in data analytics and artificial intelligence
research. While the distinction between these two approaches is
often blurred, understanding their differences is critical for
selecting the appropriate modeling technique. In the fields of
pathogen identification, machine Learning and deep learning
methods exhibit distinct differences regarding the quantity and
nature of training data required, complexities involved in model
interpretation, and the variety of microbiome data signals
leveraged. Accordingly, the most suitable approach to employ
depends on the specifics of the acquisition process and the
characteristics of the microbiome features involved 81,

In the domain of microbiome-based diagnostic systems,
pathogen identification often focuses on the species or strain of
the infectious agent present in a biological specimen; the
likelihood of specific resistance genes; or both. These outputs can
be predicted from a range of dataset types, including sequence-
based, Biosensor, and gene-resistome observations [, The data
collected through these methods can support either machine
Learning or deep learning frameworks, depending on the
intended feature set and temporal constraints. For example,
biosensor datasets generally yield signals that are more amenable
to machine Learning methods, while the higher dimensionality of
extracted features from genomes and resistomes linked to
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metagenomics or gene-resistome datasets is more suited to deep
learning approaches. Moreover, algorithmic intricacies
associated with employing deep learning necessitate larger
sample sizes for effective training, rendering machine learning
the favored option when the data acquisition timeline is
condensed [39: 40 41, 42],

Predictive modeling for pathogen identification

The human microbiome serves as an unexplored reservoir of
information to predict microbiome-dependent pathogen
infections and guide antibiotic selection. Recent work has
demonstrated that infectious diseases alter the composition of
microbiome communities. As such, microbiome sequencing data
has the potential to inform pathogen detection, knowledge that
can be efficiently incorporated into predictive models. The
targeted output of these models includes species, strain, and
antibiotic-resistance predictions, with analyzable features
derived from metagenomic DNA sequencing and other
unintrusive biosensors capable of quantifying metabolites,
volatile compounds, and other by-products associated with
human microbiome activities [F° By accelerating the
identification of infectious pathogens, such models have the
potential to inform and personalize treatment and improve patient
outcomes.

Specifically, real-time monitoring of microbiome
compositions through various sensors can facilitate the timely
detection of community shifts brought on by pathogen-host
interactions. Target species and specific interaction pairs have
been linked to certain conditions, ranging from Clostridium
difficile transmission and urinary tract infections (UTISs) to sepsis
(431 Classifying these interactions allows models to tackle
pathogen identification at the patient level and to evaluate
infection risk on the basis of microbiome data along with
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spatiotemporal movement patterns. By combining these diverse
predictive signals with data streams that cover pathogen spread
through microbial, waterborne, and fomitic routes, a
comprehensive system for infection monitoring emerges.

Al in outbreak detection and surveillance

Machine learning applications for infectious disease testing
showcase healthcare disruptions and include outbreak detection
and proactive surveillance. Healthcare records, demographic
information, environmental data on humidity, temperature,
precipitation, wind speed, and population density fuel forecasting
models [,

Al-based early warning systems are continuously
scrutinizing vast amounts of data sourced from various online
health portals, advanced environmental sensors, and
sophisticated flow cytometers to identify potentially alarming
microbial infection patterns that could pose serious risks. A
stand-alone item is expertly connected to local and broader
infectious disease reporting databases that effectively follow
targeted pathogens of interest that merit close attention.
Microbiological count databases meticulously track species
associations, relevant modification timelines, and broader health
screening links that are instrumental in assessing public health.
Such advanced systems facilitate prompt and thorough public
health investigations, which trigger essential biotechnological
diagnostics that prioritize forthcoming species of concern that
could impact community health [#4: 4546, 471
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Chapter - 6

Integrating Al with Microbiome Data

Data preprocessing and normalization

Scaling and transformation serve as alternatives to rarefying
[481 Scaling adjusts the data relative to a reference sample, using
approaches such as total sum, trimmed mean, geometric mean,
upper quartile, or data-driven threshold. Scaling deals with
sparsity and is compatible with most statistical methods, yet it
does not fully resolve compositional data challenges.
Transformation replaces the original counts with normalized
ones, and various methods, including additive, centered, and
isometric log-ratio transformations, exist for microbiome data.
Transformation does not reduce sample size but can complicate
the estimation of diversity, feature selection, or correlation
between samples when precision remains constrained. Again,
zero counts pose challenges during transformation, and
employing pseudo-counts or imputation has advantages and
limitations. The addition of a pseudo-count can inflate low-
abundance features, while imputation can induce spurious
correlations among zeros 81,

Feature selection and dimensionality reduction

Constitute fundamental preparatory steps in Microbiome-Al
fusion, applicable to various microbiome data types. While large
datasets can provide a plethora of features, many of these are
irrelevant or excessively noisy for supervised-machine-learning
models such as those aimed at predicting infections. Reducing
the feature space to focus on the most relevant signals is thus
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essential prior to the automatic identification of informative
patterns. Moreover, maintaining biological interpretability
during feature-reduction procedures is crucial to ensure that the
selected features not only aid prediction but also support the
diagnosis of infection routes and inform subsequent clinical
decisions.

Work on multidimensional feature reduction specifically
tailored to microbiome data is limited. Studies employing
standard dimensionality-reduction techniques, such as PCA and
t-SNE, often disregard the unique biological characteristics of the
datasets and may yield results that remain difficult to interpret
from a microbiological perspective (ref: 977bbbce-7aec-4a4b-
8390-6eb346ea2b06). Adopting well-targeted strategies for
feature selection and dimensionality reduction, thus combining
signal concentration with biological relevance, enhances the
utility of Microbiome-Al applications. The need to tackle both
aspects simultaneously arises from the distinct procedures
involved in the two activities and the site-specific nature of the
signals available for infection prediction (ref: 40da36a5-7323-
4478-b408-b99d424554¢9) [49 50,511,

Challenges in microbiome-Al fusion

Artificial intelligence (Al) holds promise for enhancing
medical diagnostics-a particular focus in digital healthcare-and
improving national disease outbreak surveillance. In parallel,
precision medicine is evolving from the broader establishment of
clinical pathways, protocols, and guidelines into smaller units of
therapy from populations into varied and individualized
treatment plans. Within this context, precision microbiome
medicine merges microbiome data into diagnostics and treatment
options; a particularly tractable challenge within the broader
precision medicine landscape. Holistic models of infectious
disease have primarily characterized the interactions of pathogen,
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host, and environment. However, efforts to build models of the
clinical microbiome and its relationship to infectious disease are
now evolving .
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Chapter - 7

Real-Time Pathogen Detection and Monitoring

Al-based biosensors

A broad range of sensing modalities supports biosensor-
based  diagnostics,  facilitating  point-of-care  (POC)
implementation 1. Al-especially ~ machine learning-
fundamentally reshapes PIC epidemiology, equipping experts
with new capabilities for health monitoring, pathogen detection,
and infection prediction 2. When combined with conventional
resources and numerical data, biosensor signals enhance
detection and prevention of infection risks. The demand for
biosensors rises with global efforts in epidemic monitoring and
COVID-19-related  precautions.  Alongside conventional
monitoring and detection technologies, biosensors serve to
effectively validate both local and global health transmissions.

Further Pl-related sensors lend vital support to
multidisciplinary approaches that encompass a wide array of
disciplines, including microbial, metabolic, and lifestyle
monitoring. These advanced technologies enable an
unprecedented level of precision in data gathering. The
accessibility of such accurate, longitudinal, and lifestyle-related
data collection holds immense potential to significantly enhance
the existing pandemic model by capturing critical insights that
were previously underestimated or overlooked in the context of
Pl transmissions. Various aspects of monitoring signals arise
from conventional detection methods, early identification of
outbreaks, comprehensive infection risk  assessments,
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evaluations of nosocomial infections, occasional infection sites,
and precise forecasts regarding the progression of infections over
time. This comprehensive data collection approach not only aids
in understanding current infection trends but also lays the
groundwork for proactive responses in the domain of public
health management and epidemiology. [44 53 54

Wearable diagnostics

Wearable devices facilitate longitudinal and nonintrusive
monitoring of various biophysical markers, promoting adherence
and integration into clinical workflows %1, They are particularly
well suited to monitoring at-risk populations, such as patients on
antibiotic treatment or those exposed to infectious outbreaks,
when early detection of secondary nosocomial infections or
pathogen carriage is crucial [°®1. Microbiome signals that indicate
increased risk of infection can therefore be coupled with smart
biosensors to implement a comprehensive infectious disease
management workflow.

Point-of-care tools using microbiome signals

Appropriately, microbiome signals are particularly
compelling for point-of-care (POC) diagnostics, where simple
binary decisions based on low-complexity input types must be
made rapidly, sometimes even without the assistance of a
laboratory specialist . When used in conjunction with
externally complemented sensing technologies, these signals can
inform immediate decisions about antibiotic use, microbiome-
modulating therapies, and therapeutic resistance-choices that
otherwise require time-consuming laboratory intervention. The
target specifications for such POC diagnostics in infectious
disease agreements with established studies on urgency and
decision complexity 1. POC diagnostics deal with clear
pathogen identification and resistance forecasting from intact
biological samples to components such as circulating DNA or
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RNA shed by active pathogens remain viable options. By
utilizing Al-based models, the corresponding data support a
higher-frequency early-warning system that might prevent the
onset of infection or act preemptively following environmental
exposure.
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Chapter - 8

Personalized Antimicrobial Therapies

Microbiome-informed antibiotic selection

Precision microbiome medicine offers a paradigm shift from
conventional one-size-fits-all approaches by tailoring diagnostics
and therapeutics to an individual’s unique microbial
communities and host characteristics.  Consequently,
microbiome-informed models for pathogen and resistance
prediction hold considerable promise for enhancing infectious
disease diagnostics. Specifically, advanced analytics applied to
multi-omics and biosensor data can pinpoint pathogens, forecast
resistances, and identify target pathogens and mechanism-based
therapies. However, regions such as low- and middle-income
countries (LMICs), where such intricate data may not be readily
available, risk being sidelined from the benefits of microbiome
intelligence. Accordingly, models that extract microbiome
signatures from routine culture data, thus enabling large-scale
monitoring of microbial resistance, could enhance diagnostic
equality across diverse geographies and enable precision
guidance toward effective treatments.

Al plays a crucial and pivotal role in significantly enriching
and enhancing antibiotic selection processes. Advanced models
that are meticulously trained on datasets encompassing
metagenomics, resistome, and comprehensive microbiota data
have the capability to accurately predict the minimum inhibitory
concentration (MIC) ranges. These models can also identify the
likely resistance determinants for various key infection
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pathogens. Moreover, when it comes to the analysis of
microbiota alone, such assessments can effectively steer
proposals for targeted therapy and inform the selections of fecal
microbiota transplant (FMT) donors. This is achieved by
identifying patients who exhibit significant microbial deviations
prior to their transplants, leading to better therapeutic outcomes
and personalized treatment strategies [ 58 59 601,

Al for predicting resistance profiles

The widespread utilization of antibiotics has been plagued by
the emergence of resistance. The accurate distinction between
susceptible and resistant microorganisms is paramount for
effective antibiotic selection and the reduction of resistance
propagation. The increasing sophistication of next-generation
sequencing technologies (NGS) has enabled the determination of
the genomic features of pathogens, paving the way for the
selection of antibiotics on a genomic basis. Furthermore,
machine-learning models can predict the likelihood of
antimicrobial resistance directly from the metagenomic
sequencing of clinical samples. These network-based models
have made it possible to generate a comprehensive overview of
the resistome, thereby offering decision-support capabilities for
the sustainable application of antibiotics.

Microbial metabolites play a pivotal role in the modulation of
antibiotic activity and the prediction of pharmacological effects.
Machine-learning algorithms can forecast the metabolization of
drugs through the gut microbiota from their structural
characteristics. The generated knowledge on pharmacokinetic
profiles holds the potential for preclinical screening of drug
candidates, ultimately minimizing the risk of late-stage failures
associated with in vivo studies. Similarly, ongoing research
endeavors aim to elucidate the association of broad-spectrum
antibiotics with the microbiome to guide clinically pertinent
therapeutic decisions 1.
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Fecal microbiota transplantation (FMT) and probiotics

Microbiota-based interventions seek to restore healthy
microbiota composition and function. The World Health
Organization has listed fecal microbiota transplantation (FMT)
as an essential therapy, and a practical diagnostic framework
exists for identifying candidates. Models trained with 16S
amplicon sequencing data indicate a preventive effect against
Clostridium difficile. Experimental and clinical studies
demonstrate that modeling the microbiota community enables
Al-assisted donor-recipient matching; patterns of predicted
donor impact correlate with clinical success.

Probiotics, prebiotics, and synbiotics constitute additional
therapeutic avenues. When the microbiota is a target and specific
candidates are under consideration, a framework for scrutinizing
their suitability according to patient context has been articulated.
Al-enhanced matching for pivotal microbiota-based treatments is
an emerging field where diagnostic input can refine strategy
development and increase the probability of favorable outcomes.
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Chapter - 9

Al-Enhanced Drug Discovery Targeting the
Microbiome

Screening of microbiota-based therapeutics

Microbiota-based therapeutics have emerged as a promising
strategy to combat infections and restore microbiome balance.
The performance of microbiota-based therapeutics, such as fecal
microbiota transplantation (FMT) or dietary supplements, can
vary considerably among individuals. This variability often
hinders the identification of optimal therapeutic options or
candidate donors. A systematic assessment of microbial and host
markers could facilitate the selection of microbiota-modulating
strategies in precision medicine frameworks.

Microbiome parameters influencing the efficacy of
microbiota-targeting treatments can be predicted using artificial
intelligence (Al) methods. To address the clinical need for
personalized microbiota modulation recommendations, machine
learning (ML) tools for predicting treatment outcome were
developed. These models leverage diverse pre- and post-
treatment datasets and capture the effects of dietary changes,
probiotics, and prebiotics on the microbiome 64,

Predicting microbial drug metabolism

The human gut microbiome harbors a vast array of metabolic
enzymes capable of modulating human physiology and the
metabolism of drug molecules. Microbiome-mediated
modification of drug metabolism can substantially alter
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pharmacokinetics and  pharmacodynamics, leading to
interindividual variations in therapeutic outcomes, adverse drug
reactions, and even drug efficacy. It has been demonstrated
experimentally that the biotransformation of hundreds of drugs
could be catalyzed by the human gut microbiome. Nevertheless,
a rapid in silico approach for accurately predicting the
microbiome-enzyme-drug relationships before in vitro studies
remains important, especially for drug development pipelines
that require fast action 2. The microbiome-ecosystem status
prior to exposure to a drug can also be predicted, as the drug itself
may alter the metabolism of other molecules present in the
ecosystem [ A tool called DrugBug-2 has been developed,
which employs a machine learning framework trained on a large
experimental dataset of 475 drugs that have been biotransformed
by the gut microbiota and their associated microbiome-encoded
metabolic enzymes.

Al-guided microbiome modulation strategies

Design interventions-dietary changes, prebiotics, or
probiotics-with simultaneous tracking of pathogen presence or
related signals, to enhance effectiveness and suggest adjustments
as conditions evolve [°1. Optimization employs formalisms such
as response surface methods, combining preliminary
experiments with feedback-control algorithms. Systems biology
models extract community-scaled interactions, enabling trials
with multiple microbes, to gauge interventions targeting
frequently overrepresented taxa, or multi-species replacements
that quell competition or foster beneficent partners. Al
interfacing describes structure-activity relationships across food
compounds, prebiotics, and probiotics, aiding therapeutic
selections for specific objectives.
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Chapter - 10
Host-Microbiome-Pathogen Triad Modeling

Systems biology approaches

Microbiomes contribute to human health and well-being and
are involved in diseases. Disruption of microbiota increases risks
of opportunistic infections and can alter pathogen life cycles, yet
a comprehensive understanding of the links between microbiota
and infections is still lacking. Systems biology enables the
integration of biological data from multiple sources into
mathematical models that describe systems-level activities
governed by the interacting components. Building systems
biology models of pathogen-host-microbiome interactions can
provide an integrative viewpoint on infection risk mechanisms,
guide experimental studies refining diagnostic targeting and
treatment selection, and enable the prediction of the effects of
selected interventions.

Al models formally represent knowledge, make predictions,
and provide insights into pathogen-host-microbiome
interactions-formulating complex biological problems in
guantitative terms and capturing diverse operating principles. By
permitting in silico experiments, they facilitate the generation of
and testing hypotheses, thus accelerating cautionary evaluation
of clinically and biologically relevant scenarios-hypothetical
perturbations of the microbiome, microbiome shifts induced by
vaccines or therapies, and the predicted outcomes of such events
5. 21 Cross-reference the title ‘Al models simulating
interactions’ when planning ‘Implications for immune therapies.’
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Al models simulating interactions

Machine learning models provide unique tools for scientific
exploration of pathogen-host-microbiome interactions after
infection. In silico experiments can test hypotheses about
transmission pathways and quantify their likely rapidity. Data-
driven, dynamical models of microbiome evolution inform the
potential for microbiota-targeted therapies. One example of these
models is “Relationships between commensal bacteria and co-
infecting pathogens determine the severity of intestinal
infection,” which investigates how key pathogens subvert host
defenses and condition microbiota structure to facilitate
transmission of superinfections and vice versa, influencing
treatment and infection risk. The system is formulated as a
compartmental model where populations are subject to mass-
action transmission, horizontal gene transfer, and class-based
competition. Individual microorganisms govern their optimal
acquisition depending on microbiota structure, readouts are time
series of abundances, and the corresponding procedures enable
discerning the modelling and mechanistic processes with
maximum predictive, likelihood-based accuracy 41,

Implications for immune therapies

Insights into the triadic pathogen-host-microbiome
interactions  outlined above may  unlock  novel
immunomodulatory strategies for infections and sepsis .
Interactions with the microbiome shape safety and efficacy
outcomes of vaccines and therapies based on these immune
mechanisms. Reasoning around these influences could therefore
inform precision diagnostics targeting the most susceptible
pathways. Pathogen-host-microbiome modelling of C. difficile,
uropathogenic E. coli, and the fungal triad of Candida albicans,
Candida glabrata, and Saccharomyces cerevisiae illustrates the
varied and significant impact of microbiota on immune system
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regulation. Within this framework one can further probe the
relevance of pathway-specific immune signatures for different
infections.
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Chapter - 11

Ethical, Legal, and Social Implications (ESI)

Data privacy in microbiome and Al applications

Drawing relevant lessons from the human microbiome,
disease sensitivity and immune regulation emerge as two
fundamental aspects of infectious diseases. Multiple mechanisms
illustrate how microbiome perturbations contribute to heightened
infection susceptibility. Conversely, the interplay between
pathogens, microbiome and host-specific immune regulation
presents a basis for predictive diagnostics regarding infection
outcomes [, Al adoption offers promising avenues for
diagnostic tool development, accelerating detection of dysbiosis
and biotic pathways linked to intervention strategies. The use of
artificial intelligence (Al) techniques is further distinguished by
its capacity to handle big data sets, elevating their potential as
tools for guiding microbiome models and delivery systems.

Bias in Al models

These frameworks encounter population bias when the
characteristics of the training data differ significantly from those
of the target population. For instance, a model trained mainly on
White Americans may vyield higher error rates for other
demographics. Within cardiac imaging and digital histology,
variations in equipment and protocols among institutions
introduce site-specific signatures in the data that can also lead to
population bias when models are deployed elsewhere [661,
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Informed consent for microbiome-based diagnostics

The integration of next-generation sequencing to profile the
microbiome holds great promise for improved diagnostics across
a variety of infectious diseases, particularly bacterial infections.
However, microbiota profiling is still an emergent field and
microbiome-based diagnostics have yet to be adopted for clinical
use. Rigorous evaluation of the accuracy of these diagnostics, as
well as their integration in clinical practice, is still ongoing.
Understanding the evolution, distribution, and growth of co-
infecting pathogens, notably during co-infection with common
pathogens, is critical for guiding treatment strategies. Additional
modelling efforts aimed at understanding pathogen spread, end-
points, and optimally-targeted treatment strategies also offer
potential. Cross-jurisdictional spread surveillance is also critical,
and Al models have the potential to play a pivotal role in such
investigations.

The optimisation of epidemic- and intervention-targeting
agent deployment across tightly co-dependent networks
represents an additional modelling challenge with far-reaching
implications for tackling future pandemics. The emergence of
bulk omics technologies presents another important opportunity;
the integration of host/viral and virome data on the same sample
will enable the study of the interplay between human host
response and virus (including bacteria) interactions in infectious
diseases. Microbiota studies have so far exclusively focused on a
single compartment (e.g., blood or gut); tracking pathogens,
microbiota and viral pathogens across multiple samples and
compartments is crucial in unravelling the community responses
to pathogen challenges and virulence factors such as
antimicrobial resistance. Companion datasets, including virome,
metabolome, and metabolome-soil datasets, may aid in further
elucidating microbial network-level understanding of the impact
of soil on the microbiome and the role of viral co-infection on
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pathogenicity and spread. Across Pandemic 1, Pandemic 2, and
Pandemic 3 studies, the impact of individual pathogens and their
respective interactions from circadian, annual, and pandemic
cycles can be investigated 671,
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Chapter - 12

Case Studies in Precision Microbiome Medicine

COVID-19 and microbiome interactions

COVID-19 emerged in December 2019 as a serious
pandemic; its causative agent, SARS-CoV-2, is transmitted
mainly via respiratory droplets. The microbiome plays key roles
in the onset, development, and recovery from COVID-19.
Perturbations of the gut microbiome have been associated with
an increased risk of acute respiratory distress syndrome and
COVID-19 severity. Concomitant infection with pathogens such
as influenza a virus has been correlated with more severe disease.
The accumulation of harmful pathogens can, on the other hand,
promote gut dysbiosis, compromising the barrier against SARS-
CoV-2 and favouring replication. Continuous monitoring of the
microbiome may provide complementary insights into COVID-
19 progression 681,

Recent advances in rapid and accurate detection of a
pathogen’s presence or absence have paved the way for an
independent pathway towards reliable diagnosis and ongoing
monitoring of COVID-19. The pathogen-host-microbiome
triadic interactions associated with COVID-19 allow for serious
yet timely surveillance, as existing co-infections consume
portions of valuable information used in previous models. Early
screening has emerged as a priority target; the combination of
key features from low-cost instruments with multi-omics
approaches empowers strategic decision-making around not only
COVID-19 but also other respiratory infectious diseases.
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Al diagnostics in tuberculosis and HIV

Applications of Artificial Intelligence in Microbial Diagnosis
The diagnosis is an important factor in healthcare care, and it is
essential to identify microorganisms that cause infections and
diseases. The application of artificial intelligence (Al) systems
can improve disease management, drug development, antibiotic
resistance prediction, and epidemiological monitoring in the field
of microbial diagnosis. Al systems can quickly and accurately
detect infections, including new and drug-resistant strains, and
enable early detection of antibiotic resistance and improved
diagnostic techniques. The application of Al in bacterial
diagnosis focuses on the speed, precision, and identification of
pathogens and the ability to predict antibiotic resistance.
Microbial diagnosis entails the identification of microorganisms
through techniques such as culture, molecular analysis, and
imaging, which constitute a pivotal domain within the realm of
healthcare. It starts with appropriate sample collection and runs
into several problems with conventional procedures, including
sample handling, difficulty in culture, incorrect identification,
and antimicrobial susceptibility testing difficulties. These
traditional methods require manpower, and treatment is often
delayed. Artificial intelligence (Al) has revolutionized the field
of microbial diagnostics by providing more precise and current
findings. Al analyzes data, pattern recognition, and diagnostic
processes faster. It is essential for early identification of the
disease, advancement of treatment, custom treatment, and
epidemic monitoring. Advanced data sets are analyzed by Al-
driven algorithms to detect infections rapidly, anticipate disease
outbreaks, and improve treatment approaches and outcomes. The
use of Al in microbial diagnosis raises concerns about ethics,
including protecting patient privacy, addressing algorithmic
biases, maintaining data security, promoting transparency, and
ensuring equal treatment.
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Machine learning of the Whole Genome Sequence of
Mycobacterium Tuberculosis: A Scoping PRISMA-based
Review This review analyzes Al models for predicting DR-TB
profiles, including Al techniques, datasets, and performance
metrics, to understand strengths and limitations. It discusses
experimental setups, data sources, and evaluation methodologies
to gain insights into advancements and challenges and suggests
future research directions. Proposed avenues include integrating
multiple Al techniques with other modalities, developing robust
models for diverse, noisy data, predicting resistance to additional
drugs, combining Al with molecular diagnostics or biosensors
for rapid detection, and evaluating cost-effectiveness and ethics
in low- and middle-income countries. The review also
emphasizes expanding diverse training datasets across
geographic regions and genetic variants of M. tuberculosis to
improve generalizability, and developing user-friendly
bioinformatics tools to interpret whole-genome sequencing data.
Limitations include diversity of ML approaches and inconsistent
model naming, which can hinder article discovery; to mitigate
this, a manual search of references and tools like Research Rabbit
were used, though omissions may still occur.

Nosocomial infections and microbiome disruption

Healthcare environments are associated with distinct
microbial communities that differ significantly from those found
in the community Bl The hospital environment comprises
complex ecosystems composed of microbes of human, animal,
and environmental origins, including those that are pathogenic to
humans [ Although many hospital pathogens are already well-
established in the community at the time of admission, disruption
of the microbiome due to factors such as surgery, chemotherapy,
antibiotic treatment, and prosthetic implants enhances the risk of
infection. Such disruption enables pathogens to exploit vacant
niches, spread through food and water, or, in the case of
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opportunistic pathogens such as C. difficile, take advantage of
decreased microbial competition. Early disruption therefore
represents a critical period that must be monitored and curbed to
decrease infection risk. The hospital environment offers both
opportunities for mitigation, through the implementation of
effective and rapid diagnostics, and challenges, such as enabling
low-cost standalone tools that are simple to administer and
incorporate into busy clinical workflows.
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Chapter - 13

Regulatory Frameworks and Clinical
Implementation

FDA and EMA guidelines on Al/microbiome tools

Regulatory agencies have issued important statements on the
use of Al tools in healthcare. The FDA’s discussion paper on
“Artificial Intelligence-Based Software as a Medical Device”
provides guidance for software that proposes patient diagnoses,
the selection of therapeutic options, or any other clinical decision
that determines patient management. Similar considerations may
apply to diagnostics involving severe disease phenotypes or life-
threatening conditions, which require high reliability and
accuracy, especially when the result implies a change in the
prescribed treatment or care.

Alongside the necessity of conducting clinical trials, the
continuous and ongoing evaluation of Al systems throughout
their use is crucially important to ensure patient safety
effectively. This aspect is especially relevant in the context of the
European Union, where the Medical Device Regulation
explicitly states that post-market surveillance is an essential
component for gathering real-world evidence regarding the
performance and associated risks of medical devices.
Furthermore, the stringent requirement for the traceability of all
Al decisions necessitates clear and comprehensive reporting as
well as justifications of the various data-dependent factors that
drive the decision-making process. The European Medicines
Agency's draft discussion on "Guidelines on the Use of Avrtificial
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Intelligence in Medicinal Product Development” provides
detailed delineation regarding the use of Al for medicines that are
reliant upon artificial intelligence at any stage in the
comprehensive  process: including design, development,
manufacturing, and quality control. Al applications must adhere
meticulously to a comprehensive set of principles of
trustworthiness; namely, that the system operates effectively
within clearly defined and established boundaries and is
demonstrably accurate, reliable, valid, safe, secure, and
explainable. In addition, it must be able to be audited thoroughly,
avoid or minimize unintended biases effectively, and remain
under human control throughout its operation (6% 70. 7%. 721,

The advent of machine learning (ML) in microbiome science
paves the way for clinical Al-enabled microbiome tools with the
potential to improve patient health outcomes [*l. These tools can
support the prescription of microbiome-targeted therapies by
predicting the effect of specific microbiome modulations on host
traits. Regulatory guidelines anticipate widespread adoption of
ML enzyme prediction tools in the bio-manufacturing sector,
suggesting similar uptake in clinical microbiome applications.

Microbiome tools use data such as 16S rRNA gene
sequencing, shotgun metagenomics, and metabolomics 2. The
explanatory notes from the FDA state that microbiome data
constitutes an additional diverse input and output layer that is not
the de-facto narrative of the patient (e.g., diagnosis) or the
prescription (e.g., drug selection). Microbiome analysis serves as
an exploratory scientific investigation of the relationship
between host and microbiota. Four dimensions of microbiome
data and their heterogeneous nature necessitate elucidation of
analytical validity, clinical validity, and clinical utility. Detailed
evidence standards for microbiome-targeted Al systems will be
addressed later.
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Multiple literature sources report secure handling of
electronic health record (EHR) data during Al system
development, and other domains demonstrate similar security
assurances with genomic data. Thus, these insights are applicable
when accompanying microbiome data is integrated into a broader
multi-omics clinical testing framework. As a consequence,
concern over the provision of explanatory information and
stimulus for data-provenance strategies will be highlighted in
subsequent sections.

Artificial Intelligence (Al) is progressively being integrated
into the research and application of microbiome science. The
microbiome is increasingly recognized as a key player in human
health. A wealth of microbiome data encompassing gut, oral,
vaginal, skin, and biogeographical distinctions is available.
Appropriate anonymized and aggregated microbiome samples
and associated metadata can be shared with transparent protocols
for controlled research. Until now, the standard for microbiome
data sharing has been driven by scientific collaboration.
Commercial organizations are increasingly entering the
microbiome data domain, highlighting a need to align
commercial interests with freedom of scientific research and
open access sharing to support these interests 21,

Microbiome data and analytics underpin the practice of
machine-learning-enhanced microbiota analysis to assess and
provide clinically actionable insights into human health. Data
types such as taxonomic and functional abundances captured
through 16S ribosomal RNA (rRNA) gene amplicon sequencing,
shotgun  metagenomic  sequencing,  metatranscriptomic
sequencing, or metabolomic profiling represent the core of this
domain. Additional data that provide valuable contextual
information for microbiome-targeted analysis include clinical
metadata, dietary intake records and commonly co-analyzed
dietary profiles, multi-omics measurements from host
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biosamples, gut transit time and body mass index derived from
subject questionnaires or wearable devices, and other
microbiome-independent time series observations and widely
available longitudinal datasets ™.

Artificial intelligence (Al)-the field of computer science
encompassing machine-learning (ML) and deep-learning (DL)
methods-has rapidly evolved to become a pivotal element of
microbiome science across diverse biomedical domains. Al-
driven solutions capable of predicting microbiome composition,
microbial functionality, and host-microbiome interactions
empower practitioners to efficiently derive clinically actionable
insights from complex microbiome datasets. These Al-enabled
microbiome tools address the well-documented need for
advanced analysis methods that facilitate broader adoption of
microbiome science in clinical practice. Designed to augment,
not replace, professional judgement, they assist healthcare
practitioners in gaining a deeper understanding of the relation
between human health and the microbiome.

The U.S. FDA recognizes microbiome-focused artificial
intelligence (Al) tools as devices or software as a medical device
(SaMD) for microbial characterization that derive clinical
insights without further data processing. Estimating the relevance
of raw microbiome information retains analytical validity.
Similarly, Al-enabled interpretation of microbiomes generally
remains classified as SaMD rather than an in vitro diagnostic
device [, Microbiome-targeted Al analysis occupies a unique
niche within restricted-device pathways by verifying analytical
validity through content-provider assurances on data generation
and instrument operability. Clinical-validation strategies for
microbiome-centric Al vary widely; uncontrolled studies are
commonplace, and a definitive gold standard remains elusive [,

The FDA endorses continuous validation of artificial
intelligence/machine learning (Al/ML) techniques and utilizes
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real-world evidence to inform maintenance, alteration, and
constrained expansion of indications, with expectations for
ongoing safety and performance adherence. Regulatory
discussions surrounding microbiome-centric tools emphasize
performance and safety alongside real-world evidence and
continuous-validation provisions found throughout the FDA’s
AI/ML framework. The FDA prioritizes risk management and
clinical intervention over conventional clinical-utility metrics,
although observational studies capturing clinical impacts remain
acceptable. Therefore, microbiome modeling following Al/ML
principles will likely align with FDA regulatory intent.

The US Food and Drug Administration (FDA) consolidates
medical devices, such as microbiome-system tools, vaccination
coverage, or weight loss applications. Regulatory attention for
software-based assistance products depends on the specific
claims being made. These items can still be regulated via the
software-as-a-medical-device (SaMD) pathway.

The FDA lists four gquiding principles for SaMD
classification:

1) The device’s intended use.
2) Data inputs and the outputs produced by the software
3) The effect of those outputs on clinical decision-making.

4) The workflow associated with implementing outputs or
recommendations.

Artificial intelligence/machine learning (AI/ML) platforms
that adapt and improve over time are already subject to regulation
on account of predictive-publication use cases. The agency has
further stipulated that regulatory frameworks for Al/ML tools
must account for concurrent collection of real-world data,
provided that such evidence continues to assure safety and
efficacy.
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With the centre dedicated to digital health opening in 2020,
FDA resources aimed at fostering responsible innovation have
been released as part of the Digital Health Innovation Action
Plan. The Digital Health Innovation Action Plan includes the
Software Precertification Pilot Program and an Al/ML-driven
Software as a Medical Device action plan outlining the
development of a possible future regulatory model for oversight
of software-based medical devices and their real-world
performance. Both initiatives are accompanied by collaborative
efforts with patient groups, health care providers, academics, and
industry, aiming to determine thresholds and performance
evaluations for metrics most critical to real-world operation of
Al/ML-enabled devices. By virtue of their capacity to learn from
real-world data and enhance performance on an ongoing basis,
AI/ML systems stand to benefit markedly from data collected
after deployment [©1,

Marketing authorization pathways for devices, software, and
AI/ML tools at the US FDA are accessible via the Industry
Guidance and Digital Health Center of Excellence portals.
Medical device regulations cover grounds for classification as a
device and labeling requirements that apply whether intended for
direct use by healthcare professionals or patients . Marketing
submission options comprise 510(k) and De Novo routes
predicated on substantial equivalence and exemption from
premarket review, respectively, as well as Pre-Market Approval
which addresses a broader scope of safety and effectiveness
criteria.

Software that incorporates AI/ML or following human
training is classified as Software as a Medical Device (SaMD) if
it meets Medical Device Definition for Equipment and Software.
The Digital Health Center of Excellence articulates a
conservative position on SaMD regulation based on a consensus
that the premarket review framework has not kept pace with
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innovation. The Center defines AI/ML SaMD and stipulates a
threshold that unregulated SaMDs may not alter clinical
information to qualify for exemption.

The EU approach to medical-device regulation, particularly
in the post-marketing phase, is best understood in the context of
the category of products subject to the Medical Device
Regulation (MDR). In the absence of better-defined legal
categories within the MDR, Al-driven microbiome products will
typically qualify as software classified as a Class I1-device or a
Class Il-a device addressed by the General Safety and
Performance Requirements outlined in Annex | of the MDR. The
main requirements apply not only during the pre-market phase
but also in the post-market phase, where continuous assessments
of performance and safety are required. The main difference of
the requirements concerning the safety and performance of Al-
driven devices in the pre-market and post-marketing phases is

that the latter must take into account data from actual clinical use
[3]

The majority of Al medical software operating and being
introduced in the European Union falls under the classification of
class lla or Ilb. Both class Ila and I1b devices require an external
audit and certification process to gain market access [7, 4]. The
regulations governing artificial intelligence also stipulate that
simplified and enhanced post-market surveillance should be an
integral part of the conformity assessment process [,

The European regulations use the CE mark to signify
conformity with health, safety, and environmental standards. The
Medical Device Regulation (EU) 2017/745 (MDR) classifies
devices into four classes: I, lla, Ilb, and 111, with higher classes
indicating higher risk. Class | devices require self-certification,
while most Al medical software falls under class Ila or Ilb, which
require external audits and certification for introduction [1,
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Regulatory Frameworks and Clinical Implementation of Al-
Driven Microbiome Tools outline the regulatory background of
Artificial Intelligence-enabled microbiome analysis tools, which
supplement conventional laboratory analyses of gut microbes
with insight into health impact based on artificial intelligence
(AI). This technology can enhance clinician decision-making
after microbiome examination; help to select diet and
supplements favourably influencing microbiome and health; and
support the analysis of microbial evolution in response to diet,
supplements, environmental exposure, and other factors.
Practical Al-based digital approaches address medical needs:
microbiome-aware selection of diets and supplements; pies,
plots, and histograms illustrating expected health impact on a
scale of severity and days after intervention; evolution charts; and
microbiome health impact reporting. Internal and external
oversight ensures acceptable levels of clinical relevance, health
impact, and safety.

The study designs for Al that targets microbiome data
typically encompass clinical and preclinical investigations.
Clinical investigations can vary in complexity, and a well-
defined baseline study design is crucial. A robust study should be
designed to evaluate the Al software’s analytical and clinical
validity, as well as the clinical utility of its output. Analytical
validity examines whether the Al accurately predicts features
from microbiome datasets and verifies that the ground truth is
well-defined. Importantly, in a microbiome-focused Al
implementation, the predicted features ought to involve test-
results-related microbiome signatures prior to evaluating clinical
validity 8. Clinical validity investigates how well the Al
outcome correlates with clinical parameters of interest, reflected
through clinical situations that permit sound evaluation. Clinical
utility offers assurance that the Al output enhances clinical
decision-making, potentially through a controlled intervention
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study that demonstrates Al-backed decision-making leads to
superior or more consistent outcomes compared to prevailing
practices.

The studies outlined primarily focus on microbiome-oriented
Al directed at clinical validation. Addressing the Al tool's
suitability while ensuring privacy and security requires a multi-
faceted design. Beyond individual consent, de-identification of
personal data, governance of data handling, and clear description
of data provenance constitute essential factors. The use of self-
reported questionnaires specifically addressing these dimensions,
along with data lineage consideration, is paramount in these
designs, which allows restrictive application of proprietary Al
tools without compromising copyright protection. Ethical
considerations and data governance, alongside privacy and
security, emerge as prominent issues faced during the utilization
of microbiome-related data.

Microbiome-targeted artificial intelligence can enhance
analytical, clinical, and translational validity, and few data types
warrant such investments. Essential analytical capabilities
include variety (spanning clinical, metagenomic, and phenotypic
data) and correlation (the degree to which model features relate
to existing knowledge). Vigilance is especially important
regarding clinical validity, as models may raise unanticipated
concerns beyond those planned for testing.

Study designs that secure analytical validity yet prematurely
constrain clinical validity encourage exploration of microbiome
data spaces that expand on existing knowledge ( [*1). Examples
can include investigating target-disease spaces lacking direct
clinical associations or leveraging rich phenotype data.

Analytical validity, clinical validity, and clinical utility. The
successful deployment of microbiome analytics in clinical
settings is predicated upon well-defined standards for analytical
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validity, clinical validity, and clinical utility. Such standards are
further refined when regulatory reviews are applicable.
Microbiome-targeted datasets afford the practical option of
establishing analytical validity by extensive data provenance and
system-agnostic data lineage. Accordingly, analytic tools can be
deployed without prior clinical validation. With respect to
clinical tools, analytical validity refers to tool application in
accordance with described case studies and formal usage
instructions, rather than comparative performance, whereas
modelling is a prerequisite for clinical validity in non-regulated
scenarios. Principles of clinical utility in microbiome analytics
remain under exploration. Design frameworks mapping directly
from clinical questions and case study characteristics support
audit trail and provenance capture during real-world operation,
thus ensuring alignment with system-independent validation
principles.

Workflow integration presents additional control over data
transmission, provenance specification, and consent tracking, all
of which are critical to regulatory compliance before system
implementation, as detailed elsewhere .

Microbiome-focused data, characterised by high
dimensionality and compositional parameters, impose further
constraints on validation strategies. Data-focussed frameworks
align seamlessly with established decision-making and clinical
control concepts, facilitating rigorous validation exposition.

The ethical implications of microbiome-targeted Al have
earned increasing interest along with the rapid evolution of
regulation and clinical applications. The need for ethics guidance
in the Al domain is widely recognized across disciplines [,
Ethical considerations encompass a diverse array of topics,
including: inserting the regulatory focus on the content that
follows. professional conduct in algorithm development; respect
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for the rights and welfare of data subjects; establishment of
appropriate institutional governance; and equitable access to
tools that can potentially generate health impact.

Frameworks for ethics in Al-based systems are being
instituted to facilitate description and interpretation of ethics
challenges. The ASIMOV project, undertaken under the auspices
of a European University Association initiative involving the EU
Commission on Al, provides a structured framework for
recording ethical issues encountered during the development of
university-based Al systems, whether in the education or
research contexts. A key element of the project concerns the
capacity to delineate systems under development that operate
with an Al component de facto or de jure, thus amplifying system
risk. The biomedical context of microbiome-targeted Al, coupled
with regulatory scrutiny, composition of the overall development
team, and patient-benefitting mission associated with the
projects, all diminish the ethical burden of microbiome-focused
algorithmic initiatives. The simplicity of the regulatory landscape
further lightens the ethical workload. Given these strong
incentive properties associated with microbiome-focused Al
development, obscuring both ethical and regulatory challenges,
precise articulation of existing concerns is both essential and
beneficial.

De-identification and consent play pivotal roles in securing
microbiome data from the introduction of Al-enabled algorithms.
De-identification refers to the removal of direct identifiers, such
as names and Social Security numbers, that could enable the
identification of study participants 1%, Re-identification risk
increases when individuals possess sensitive information about
themselves, and expansive datasets raise the likelihood of
uncovering identifiable attributes. Data governance encompasses
the authority and control over data assets and establishes data-
and process-specific policies, procedures, and standards for the
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data lifecycle Y. Governance prioritises across-the-lifecycle
management of personal data to mitigate the risks of misuse and
unintended consequences. Consent signifies the agreement by an
individual to the processing of their data under the specified
terms. Consent enables organisations to engage in legally
permissible data processing activities while preserving
transparency, autonomy, and agency for the individual.

De-identification, data governance, and consent are
prerequisite design considerations for governance of individuals’
microbiome data and implementation of Al-driven microbiome
applications. De-identification renders datasets non-attributable
to individuals while preserving analytical value for modelling
microbe-host interactions. Data governance supports de-
identification by establishing responsibilities for compliance
with regulations and organizational guidelines, formulating
appropriate policies, and monitoring adherence to them, as well
as delineating data access rights and uses. These issues are
closely intertwined with data provenance, analytical population

definitions, and participant consent, described in further detail in
[12]

Governance of microbiome data-which may derive from
health records, treatments, public health data, self-reports, or
direct measurements-is compounded by process intricacy and
diversity of potential hosts. The transparency required for
enabling the governance framework often limits the data-access
restrictions needed to fulfil an identified use. For many
microbiome applications, therefore, temporally delimited access
to the data required for identification of the analytical population
and the population itself may suffice in addition to the de-
identification necessary for the modelling stage. Governance thus
extends to specification of the microbiome-access policy matrix
and documentation of the data lineage throughout the workflow
[111 A coarse, time-correlated delineation of the models’ expected
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domain aids in determining which records, treatments, or
measurements constitute the initial data set when the governing
policy permits access to the underlying data.

Audit trails and cybersecurity measures are essential for
protecting the safety and integrity of clinical algorithms and
establishing clinician and patient trust [3]. Patient safety may be
compromised when an algorithm operates on unexpected or
unintentionally tampered data or is substituted with a different or
defective algorithm. Furthermore, the algorithm deployment
process with an Electronic Health Record (EHR)-prescribing
user interface adds further avenues for unintended tampering.
Industry best practices should therefore uphold a minimum audit
log, tracking the algorithm, the dataset, and the deployment
environment. The ability to prevent tampering with the
algorithm, either intent-driven or by another source, in
accordance with industry standards reinforces the EHR-
prescribing framework . Consequently, maintaining a secure
link within the EHR infrastructure that prevents unconsented
alterations before deployment and trace-based communication
once in execution strengthens algorithm trustworthiness.

Clinical microbiome science has seen rapid growth of Al-
enabled tools spanning microbiome sequencing, a priori
research, and cohort selection 1. The potential to address high
dimensionality, sparsity, and complex interactions in
microbiome data highlights the importance of study design,
regulatory engagement, legal requirements, proprietary data use,
and product lifecycle considerations. Workflow integration and
human-in-the-loop design optimise demand, address clinician
concerns on algorithm limitations, and facilitate abiding by
regulatory standards for continuous monitoring, algorithm
updates, and audit trails. Tools can enhance Electronic Health
Record (EHR) data collection, reduce data handling risks, and
ensure patient consent compliance.
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Microbiome tools achieve clinical integration through two
avenues: connection with electronic health records (EHR) and
attachment to laboratory workflows. EHR integration sits at the
forefront of clinical decision-support effort and is often the most
desirable mechanism for any Al-based tool . Such design aligns
data intake with the clinical environment and allows the sourced
information to remain in-place, thus strengthening data
governance. These properties also lend themselves well to
human-in-the-loop modalities, where clinician and administrator
interaction constitutes a core source of knowledge 161, Clean
input channels further assist algorithm monitoring 1. The lab-
centric counterpart, while often better suited to convenience and
fidelity of microbiome transmission, demonstrates greater risk of
disrupted data lineages and algorithm degradation through cycle
iterations.

Linking microbiome resources directly to a laboratory
information management system is the initial step to laboratory
integration. Laboratory solutions emerge from defined missions:
clarification of the use case, establishment of input heralds, and
consideration of post-analysis output, which can take the form of
stand-alone reports or direct feed-through into a patient- or
sample-bound log. Beyond report mechanisms, successful
microbiome-centric integrations secure multiple pathways into
entry-level options. A solution with limited lab compatibility can
therefore function as a contingency while reviews of linking
possibilities unfold.

Microbiome-targeted Al tools are typically introduced into
clinical workflows via software interfaces that integrate into
electronic health record and laboratory information management
systems. These clinician-facing tools are designed to enhance
microbiome analysis, aid clinical decision-making, and reduce
the cognitive burden on busy practitioners. Human-in-the-loop
design principles enable iterative co-development and formative
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evaluation through user studies, which support practice-based
decision-making and reduce the risk of developing mismatched
systems 8. Aligning the intended use, user needs, and input data
with every revision promotes relevance, while keeping clinicians
informed about the state of Al-driven analyses fosters
transparency and trust. Integration of microbiome-targeted Al
tools with existing electronic health record (EHR) systems and
laboratory workflows supports streamlined data exchange and
secure transfer of sensitive information while preserving
clinician control over the analytical process. For microbiome-
targeted Al tools, preliminary training and monitoring can occur
outside clinical settings prior to integration, and detailed change
logs facilitate regulatory compliance by documenting version
updates and adjustments to datasets and methodologies. Such
integration not only aligns with human-centered design and
regulatory requirements but also addresses specific practitioner
workflows, allowing tools to better reflect expert expectations
and deliver clinically relevant analyses [*°!. Human-in-the-loop
design and clinician-facing interfaces represent foundational
elements of the development process, ensuring that Al systems
support rather than supplant practitioner expertise and that
regulatory integration occurs early in the tool’s lifecycle.

An implementation strategy that aligns with the clinical Al
lifecycle promotes the rapid integration of new microbiome-
focused tools. Data streams from the extensive electronic health
record and laboratory information management systems residing
in healthcare institutions can complement microbiome-focused
models, as can curated databases of public microbiome studies.
These data sources include microbiome samples, clinical
outcomes, and details about patient diagnoses, laboratory tests,
medications, and treatments-and they capture the progression of
the healthcare system toward the specified patient outcome.
Regular creation of these data rounds and their scientific
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accessibility present a significant research avenue to facilitate
data-hungry microbiome Al. A human-in-the-loop design
enables submission of pertinent information for a tool that uses
new data types and alterations of existing data types while
assisting physicians in comprehending the tool's functioning and
the motivation behind inputs provided 2%,

Post-market performance of Al-enabled tools targeting the
human microbiome remains of legitimate regulatory interest
because data-generating technology must change to remain
relevant, data-generation methods evolve, and the nature of
algorithm-based predictions naturally changes when refitted.
Adjustments are anticipated, and these changes hold implications
for safety-performance linked to an individual tool or model
could alter-although such model changes disrupt overall
functionality only in rare instances that also require fresh
regulatory review. Hence, in well-designed implementations,
versioning of algorithms differs from a product-like scenario in
which the final configuration is expected to persist.

Secure systems can maintain an audit trail of configuration
settings, enabling patients and providers to verify that an
instrument operates as expected and linking constitution of the
Al-driven tool specifically to post-market risk assessment as
established earlier 211, Afterward, routine performance evolution
has implications from a reporting perspective. In the case of
conventional software, updates deemed not to compromise safety
or effectiveness need not be communicated to the regulatory
authority but generally must continue to address validated risks.
External audit ensures that all substantial changes are precisely
recorded [ and Version Control marks alterations separately;
only repetitions of core configurations must then undergo fresh
scrutiny.
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Post-market performance monitoring focuses on translating
microbiome research into clinical practice and validating tools in
real-world settings 2. For Al-driven microbiome tools,
translating research to practice typically entails integrating
clinical data with microbiome data. Translating the complex
relationship between microbiome composition and phenotypes
directly into an Al algorithm can be challenging, particularly for
data-prioritized methods such as deep learning. To preserve
experimental design and leverage assisting data, an alternative is
to utilize lightweight predictive models to estimate microbiome
composition and apply a second model to relate composition to
phenotypic response [°1. Because the first model has no access to
experimental or clinical features, variant autotrophic models or
biogeographical models that do not use prior knowledge of the
full metabolic graph are preferred, although reinforcing from
biochemical data is also possible.

Risk controls around decision-making are therefore essential,
and a robust approach ensures they remain effective throughout
the algorithm lifecycle. Continuous monitoring of statistical
risks, performance metrics, and data sources can indicate when
real-world drift or new information may affect safety and
efficacy El.

Algorithm lifecycles, including planned updates and ongoing
monitoring, warrant regulatory consideration because they
influence evidence generation. All algorithm modifications
should follow a pre-defined process that assesses and articulates
their impact on safety, performance, and applicability to existing
use cases. Documenting the scope of changes and the standard
applied for assessment, along with all associated information,
supports transparency during review and audit.

Al introduces unigque complexities in assessing and
mitigating safety, clinical, and operational risks that must be
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methodically addressed for effective microbiome applications.
The European Commission outlines an Al-specific risk
framework: “minimal” (e.g., crowdsourcing applications),
“limited” (e.g., risk evaluation of honorary co-authorship in
scientific papers), “high” (e.g., systems that assist with
substantial judicial decisions), and “unacceptable” (e.g., social
scoring systems). Microbiome-targeted Al could be positioned as
either high risk influenced by clinical context (e.g., disparate
healthcare professional inability to provide timely treatment to
patients with acute kidney injury) or as limited risk (e.g., food-
medication interactions) B,

Another method considers the foreseeable impact of Al-
generated advice on essential decisions related to patients and
organisations. An “ActU” score aggregates urgency and
uncertainty into a single measure (A = urgency, C =
consequences, T = beneficence, U = uncertainty). Real-world
illustrations enhance perception of associated contingencies
revealing the intricacy of effective operation. Displaying
limitations for patient understanding is mandated and must
accommodate the inherent uncertainty existing in all predictive
applications to comply with existing legal frameworks [23],

Establishing fundamental principles for risk assessment of
Al-driven tools in microbiome science helps ensure responsible
and compliant use. Although in vitro assays and omics
technologies underpin most microbiome characterizations, tools
are increasingly incorporating Al that produces conclusions
based on prior knowledge or human interpretation, alongside live
microbiota interventions 24, Regulatory frameworks for medical
devices and software as a medical device must therefore extend
to software that provides microbiome-related conclusions,
justifying the need to characterize various aspects and limitations
of Al-driven tools in the context of perceived risks to patients.
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A comprehensive risk framework informs manufacturers and
users of Al-powered instruments targeting the microbiome about
salient risks and acceptable mitigations. Within this ecosystem,
users-including healthcare providers, researchers and various
technical experts-make risk-aware decisions on employing the
contents of an Al-enabled software as part of a clinical workflow.
The high stakes associated with microbiome analysis heighten
interest in applying an assessment model to guide responsible
deployment of Al-driven microbiome tools and frame a discourse
on the fundamentally probabilistic nature of Al models and the
uncertainties of digital data transmission. The following risk
assessment approach aligns with FDA’s draft guidance on
artificial intelligence-based clinical decision support software
regarding considerations for clear user communication of the
inherent limitations and uncertainties of such models.

Acrtificial Intelligence (Al) performs a crucial role in the
analysis of microbiome data, but the intricacy of microbiome
science frequently leads to uncertainty regarding the predictions
generated by Al-driven tools; hence, the limitations and
uncertainty of such devices must be communicated to the patient.
Risk-analyses are indispensable for engineers and regulators to
manage Al-generated uncertainty, and these uncertainties can be
qualitative, quantitative, or model-related [, Qualitative
uncertainty encompasses the appropriate application of a model,
for example, whether an inflammatory bowel disease (IBD) risk-
prediction model is suitable for a patient that is not at risk of IBD.
Quantitative uncertainty encapsulates population-based analyses
that are location-specific. The concerning tendency to
underestimate the popularity of disease is highlighted here
contextually. Model uncertainty pertains to the additional
estimations arising from, for instance, the adoption of a multi-
layered auto-encoder that performs well across multiple datasets
but still leads to an incomplete understanding of the observed
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data.

Uncertainty encompasses the limitations of the model-data
fit, yet its quantification depends heavily on the modelling stage.
This challenge is particularly acute when employing deep-
learning models, hence Oncocount and Pathway models - which
are based on generalised linear models (GLMs) - could be
preferable from an uncertainty-communicating perspective.
Classification uncertainty stems from the challenge of
determining the correct label in supervised deep-learning
functionality or evaluating the absence of documented detection.
Nevertheless, even when stating that the prediction carries
uncertainty, Al devices might still inadvertently convey
reliability, perhaps because of the Al-driven, workshop-oriented,
or entirely unsupervised manner of operation. Such error patterns
illustrate the paramount importance of clearly conveying
limitations and uncertainty to patients.

An examination of clinical scenarios and completed
regulatory submissions for Al-powered microbiome tools
reinforces the proposed delivery and validation frameworks,
offering concrete illustrations to stimulate further development.

Regulatory pathways for Clinical Decision Support (CDS)
tools using evidence from microbiome analysis are briefly
outlined, followed by extraction of lessons learned from
completed FDA regulatory submissions for an Al-enabled
Microbiome-Metabolome Risk Assessment Capstone as a
Clinical Decision Support tool. These considerations provide
practical context for the regulatory-specific discussions. CDS or
other Al tools that do not have a direct microbiome target
application can still provide useful precedent examples, enabling
machine learning models with interpretable outputs to
characterise the human microbiome in an innovative manner.
Regulatory submissions to document the inherent safety of
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decision support tools are indispensable. The importance of
disclosing tool limitations and prediction uncertainty to patients
cannot be overstated; Al-generated information can be
misinterpreted and inadvertently harm patients if Al model
uncertainty is misjudged by the end-user or clinician performing
the interpretation

The Food and Drug Administration (FDA) defines a Medical
Device as instruments, apparatuses, and in vitro reagents
intended for use for the diagnosis, cure, mitigation, treatment, or
prevention of disease. The FDA defines software as a medical
device (SaMD) broadly as any software that is intended for one
or more medical purposes without being considered a part of a
hardware medical device, thus extending the definition of
Medical Devices to encompass SaMD, which can range from
highly complex to relatively simple Bl AI/ML algorithms
implemented in a microbiome-based model available as SaaMD
can therefore be considered a Medical Device 61, Serious biases
can lead to over-reliance on models, especially if bias derives
from misunderstood functions of microbiomes or related
signalling. The psychiatric or psychological consequences-
sustained anxiety worrying about physiological distress or
chronic depression-of an inaccurate SaMD generated by a
microbiome-based model benchmarked by observational data
can be severe, justifying consideration of potential Harm as well
as intended Benefits when prioritizing a particular de-bugging
task.

In a review of regulatory submission trajectories at the FDA
for medicinal products, ) identified lessons that can inform the
development of Al tools for microbiome analysis. Submission
failures are often linked to the absence of a clearly articulated
scientific rationale. Gaps in analytical or clinical validation are
also major causes of deficiency in the submission package. The
use of a digital or model-based framework to describe
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supplemental components of microbiome modelling can enhance
understandability and straightforwardness of application. Having
an Al-enabled microbiome modelling program and the
corresponding regulatory pathway clearly defined before initial
development can significantly economize resource use and
accelerate access to the market.

Clinical microbiome tools enhancing patient care through
insights on the gut ecosystem may be implemented safely and
effectively within healthcare today. ! Regulation-navigating
validation studies matching clinical microbiome applications
with appropriate FDA or EMA pathways demonstrate concurrent
alignment of analytical, clinical, operational, privacy, security,
and ethical responsibilities.  Sufficiently understanding
microbiome data diversity permits identification of suitable
evidence standards-summary-based investigations support robust
microbiome Al evidence, satisfying amenability to alternative
regulatory regimes.

Al-driven systems can improve the quality of care and assist
compliance with safety guidelines and legal obligations.
Maintaining workflow integration, governance, and risk
management ensures systematic alignment with agency
standards and patient welfare. Continuous monitoring safeguards
patient welfare amid algorithm updates. Patient data privacy
expands access to microbiome insights in diverse settings and
permits system-level workflow automation.

Clinical trial designs for microbiome-based diagnostics

Al-powered diagnostics of human health and disease rely on
omics science to capture molecular fingerprints of biological
systems. Such information facilitates precise and individualized
medical decisions that positively affect patient health throughout
the life cycle. Data-driven models for inferring microbial co-
occurrence patterns from amplicon and metagenomic surveys
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allow the reconstruction of both taxonomy and function across
eukaryotes, bacteria, and viruses, enabling an understanding of
healthy and diseased states spanning microbiomes, food webs,
and the flourishing ecosystem of Earth. Because their
spatiotemporal  features are navigable from diverse
environmental niches to the human biogeome, biosensors
capable of providing the status of microbial multitudes
simultaneously support early and actionable detection of disease
causation-empowering microbiome diagnostics to discover
health threats and infection risk, guide therapeutic selection, and
personalize interventions. At the interface of these health
imperatives lies a convergence of precision microbiome
medicine and microbial diagnostics. Specifically, listed below
are clinical trial designs appropriate for testing various ecological
or identified signals of pathogens or health states together with
Al-powered algorithms for predicting the presence or
physiological state of targeted microorganisms in microbiome
samples or biosensors ["®l. Microbiome diagnostics hold the
potential to greatly benefit human health.

Standardization challenges

In order to compare and integrate findings on microbiome
dynamics across studies utilizing different sequencing methods,
techniques, analysis tools, and reporting formats, the effort to
standardize microbiome reporting has gained wide interest in the
research community. Since microbiome diagnostics and clinical
applications are projected to increase, current methods and data
formats must meet minimum levels of standardization "4,
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Chapter - 14

Future Frontiers: Gut-Brain Axis, Virome, and
Beyond

Emerging microbiome domains (fungome, virome,
mycobiome)

Explorations of the human microbiota typically focus on
archetypal members of the bacteria and archaea domains of life,
especially their evolutionary relationships, community
composition, and functional capacities. However, other
microbiome components and higher-level microbial taxonomic
units are increasingly recognized. In 2017, the term “fungome”
appeared in a broad call for integrative resolution of simultaneous
fungal surveys spanning culture assays and next-generation
sequencing. The “virome” describes viruses and their hosts; as
biogeochemical roles of noncellular, filterable life forms gained
recognition, viromic portraits were crafted for the 2011 human
virome project. Similarly, “mycobiome” denotes fungal
functional or phylogenetic service avatars: such harvesting
enables association of observed anomalies or fabulations (species
presence/absence, abundance shifts) to precise community
controllers, guiding articulation of cause/effect systems
governing complex microbial systems 1. A substantial catalog
of structured training sets of rich, well-documented longitudinal
multimixture  biocensus  time-series, curing forbidding
generation-scattering in epidemiological-speciation inference-
forecasting between booming generation-scattering types, has
thus begun to accrue, nourished by a general emergence of
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actively curated sample bank services; representative sets are
cited.

Microbiome and neuroinfectious diseases

Pathogen propagation can facilitate the crossing of multiple
bacteria through the blood-brain barrier ["®l, Infection risk can
increase due to the dysregulation of the oral microbiome. A
proposed shift in the composition and activity of the gut-brain
microbial communities can influence physiology, thereby
promoting changes beyond the gut. Subject-microbiome
relationships,  physiological  response, and infection
predisposition can be assessed through microbiome
characterizations.

AD’s role in decoding complex microbial ecosystems

Artificial intelligence (Al) is crucial for deciphering intricate
microbial ecosystems due to the complexity and dynamism of
microbial interactivity, along with the diverse formats of Al-
enabled data acquisition. By analyzing microbial datasets
gathered at various locations on an individual, Al elucidates the
interplay of community structure, function, and health condition
and suggests opportunistic pathogens when infections are
underway. Even after an infection has been pinpointed, Al can
project population dynamics; model the competition,
cooperation, and network interplay of community members; and
estimate the cohabitation time of predominant species.
Furthermore, Al helps recognize the temporal evolution of
ecosystems, picks pertinent characteristics from high-
dimensional databases, and formulates hypotheses on ecological
principles  governing the emergence of  specific
interdependencies [°1. At a strategic level, a human microbiome-
based focus driving rapid tooling development enables an
examination and operationalization of microbiome inputs for
diverse other fields including residues, surfaces, and extinction;
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deciphering the influence of human behavior on plant growth
through soil microbiomes; and characterizing single-cell
microbial dynamism to optimize reactor efficiency.
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Chapter - 15

Conclusion and Vision for the Future

Synergy between Al and microbiome science

Artificial Intelligence (Al) and Machine Learning (ML)
approaches provide tremendous and invaluable insights into the
gut microbiome as related to human health and the complexities
surrounding it. Precision medicine, a tailored approach that
customizes medical prevention and treatments to the unique
characteristics of each individual patient, leads to personalized
insights derived from the specific composition of the gut
microbiome and its interactions with overall health. Automated
Machine Learning (AutoML) models are exceptionally well
suited for analyzing microbiome data due to its inherent size,
sparsity, and complexity, as well as the commonly shared
standardized data formats that facilitate the seamless merging of
diverse datasets collected from robots and sensors with detailed
genome sequencing data. The ability to provision these extensive
datasets leads to the development of unique emergent models that
are specific to each individual and can persist for the entire
duration of that model's applicability. The realms of Al and the
microbiome have emerged as crucially important areas of study,
both independently and synergistically, raising significant issues
related to privacy, security, and equity in the handling of data. Al
and ML applications are pervasive across numerous domains,
leading to exciting new opportunities for modeling human health
by unlocking previously inaccessible microbiome data as well as
auxiliary genomic sequence data. The provision of these datasets
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remains critically important to enable further experimentation
using Al and ML methodologies, and datasets can be efficiently
merged to enhance analysis. A central goal in optimizing
microbiome health is to prevent the resuscitation and
proliferation of harmful pathogens, particularly in sensitive
environments. The deteriorating lung-care environment faced by
patients on ventilators, when managed by healthy caregivers,
significantly elevates the long-standing challenges associated
with hospital-acquired pneumonia. The passive acquisition of
pathogens from mortified skin surfaces, which reside on various
human surfaces through bacterial, fungal, and spore attributes,
necessitates the development of automatic alerts to maintain the
safety and wellness of patients and caregivers, extending to the
global community. Recent academic literature has been utilized
to thoroughly assess the key drivers of Al and microbiome
interactions across various disciplines. Ensuring regulatory
compliance plays a crucial role in establishing retrospective
national cyber assurance frameworks and guarantees high
reliability for real-time alerts, thereby allowing for the retraction
of non-compliant articles when necessary. Practical details of the
implementation remain firmly on track with the overarching aim
of facilitating the development of a working End-to-End live
system that operates at human skin dimensions, ultimately
benefiting all stakeholders involved [/8: 77 781,

Toward fully personalized infectious disease care

Infectious diseases pose a significant threat to global health,
and antimicrobial resistance is threatening to render our most
effective antibiotics useless. Many commercially available
pathogen-detection methods still fail to identify the infecting
organism more than 50% of the time, and diagnosis remains
under-investigated compared to other medical specialties. As a
result, critically ill patients are often started on empiric (guess)
therapy that may be inappropriate. Infectious disease accounts for
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more than 30% of patients who develop acute-on-chronic kidney
disease due to nephrotoxic antibiotics. These, coupled with
significant logistical or analytical hurdles, remain deeply
understudied [,

Precision medicine strives to identify the right treatment for
the right patient at the right time. Competent models that address
the time dimension are thus critically needed 71, By combining
traditional micro-biology with the latest advances in Al and
biosensors, a fully personalized approach to infectious disease is
slowly emerging. However, two major limitations hinder their
clinical implementation: the absence of fully structured training
datasets to build and validate reliable predictive models, and the
need for extensive data pre-processing and a defined machine-
learning strategy at the implementation stage.

Challenges and opportunities ahead

Practical, ethical, and scientific challenges must be addressed
to realise the full potential of microbiome-informed diagnostics.
Advancing the microbiome field requires new experimental
techniques, data types, and modelling paradigms. At the
experimental level, more easily interpretable biosensors could
reveal pathogen-specific signatures that other modalities fail to
detect. Strain-resolved metagenomic data would clarify the
precise roles of individual microbial members. Detailed host
immune response readouts would directly link microbiome
functions to infection and inform decoupled immune-targeted
diagnostics. Multi-organ, interkingdom, or viral approaches
could explore other parts of the body or different infectious
agents to test for emergent phenomena through microbiome
influences. Novel assay formats that non-invasively extract
signals from unanticipated sources present interesting avenues
for exploration.

Regulatory demands for algorithmic transparency are rising
significantly in tandem with the accelerated adoption of artificial
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intelligence across various sectors and industries. One important
avenue of this increased scrutiny focuses on the critical need for
a broader and more comprehensive representation within training
cohorts. This broader representation is essential to mitigate the
risk of faction-differentiated rollout that may arise from biases in
training data. To effectively address this challenge, proactive
assessment methods should be employed to systematically gauge
the generality of the underlying modelling assumptions, thereby
identifying any remaining side effects that could potentially
threaten equitable access to Al systems. Furthermore,
interpretability techniques that trace model decisions back to
specific input features are instrumental in allowing for thorough
vulnerability checks and ensuring accountability. This process
not only fosters greater trust in the classifiers but also unlocks
crucial opportunities to delve deeper into understanding their
operational principles. By committing to such precautionary
readiness, stakeholders can ensure adequate preparedness for
resource-limited scenarios. This includes exploring opportunities
to streamline combinations of multisource inputs, enhancing
overall system efficiency and outcomes. Additionally, it opens
the door for potential redeployment of these algorithms for other
microbiome-related applications, broadening the impact of Al in
healthcare and related fields [0 81 82,83
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Chapter - 16

Conclusion

A pandemic is a starting point for action but also an alarm bell
for systemic transitions. Although it is impossible to predict
whether such a drastic, yet necessary, transformation will occur,
the experience of the COVID-19 pandemic has fundamentally
altered perspectives on the impact of infectious diseases on
society and the economy - on the micro-scale as well as the
macro-scale. In the context of the human microbiome,
pathogenic bacteria need to be tackled swiftly. The Al-based
precision microbiome medicine and the Al-driven infectious
disease diagnostic systems proposed in this research can serve as
indispensable monitors, deterrent devices, rapid responders and
precise protectors. They are of unprecedented importance in
situations of growing antibiotic resistance, re-emerging
infectious diseases and viruses incorporating bacterial systems.
A third wave of dangers is propagating such infectious threats,
and at the same time, rapidly communicating them through
instant technologies intensifies their dissemination enormously.
The combined authority of biotechnology and Al profoundly
transforms international society.
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