Principles of Physical Sciences and Their Applications in Diagnosis and Therapy

Editors

Dhafer Talib Fawari Hashim

Department of Medical Physics, College of Science, AL_Mustaqbal University, Iraq

Ayoob Talib Abed Dagher

Ibn-AL-Haitham, College of Education for Pure Science, University of Baghdad, Iraq

Saif Ali Faisal Ghazi

Department of Medical Physics, College of Science, Alkarkh University, Iraq

Iman Amin Ahmed Al Kuyani

Department of Biophysics, College of Science, University of Mosul, Iraq

Obaida Khader Ibrahim Kulaib Al-Obaidi

Department of Biophysics, College of Science, University of Mosul, Iraq

Bright Sky Publications TM New Delhi

Published By: Bright Sky Publications

Bright Sky Publication Office No. 3, 1st Floor, Pocket - H34, SEC-3, Rohini, Delhi, 110085, India

Editors: Dhafer Talib Fawari Hashim, Ayoob Talib Abed Dagher, Saif Ali Faisal Ghazi, Iman Amin Ahmed Al Kuyani and Obaida Khader Ibrahim Kulaib Al-Obaidi

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologize if permission and acknowledgements to publish in this form have not been given. If any material has not been acknowledged please write and let us know so that we may rectify it.

© Bright Sky Publications

Edition: 1st

Publication Year: 2025

Pages: 111

Paperback ISBN: 978-93-6233-840-2

E-Book ISBN: 978-93-6233-248-6

DOI: https://doi.org/10.62906/bs.book.443

Price: ₹ 545/-

Abstract

This publication introduces the fundamental concepts of physical science and describes their diagnostic and therapeutic applications in medicine. The opening section defines physical outlines its component disciplines-physics, science and chemistry, and mathematics-while subsequent chapters focus on principles and applications. The physics chapter addresses mechanics, thermodynamics, electromagnetism, and optics; the chemistry chapter examines general chemistry, biochemistry, and chemical reactions; and the mathematics chapter covers statistics, calculus, and mathematical modeling. Diagnostic techniques-including imaging, biophysical methods, laboratory tests-and therapeutic modalities-such as radiation, ultrasound, and laser treatments-are presented in separate sections that discuss the underlying scientific principles.

Case studies serve to illustrate various medical diagnoses and therapies, significantly enhancing the vital link that exists between theoretical knowledge and practical application. In particular, cardiovascular, oncological, and neurological diagnostics provide clear demonstrations of how fundamental concepts are applied in real-world situations, thus bridging the gap between academia and clinical practice. Simultaneously, aspects such as pain management, rehabilitation, and the exploration of innovative treatments effectively exemplify a range of therapeutic uses that practitioners can adopt. At the same time, ethical issues that are related to patient consent and data privacy receive dedicated and thoughtful consideration throughout the text. A final chapter thoroughly explores future directions in the field and discusses emerging applications that could reshape healthcare practices. Throughout the work, there are clear connections made among the physical sciences and their various medical implementations. This reflects the author's sustained emphasis on the diagnostic and therapeutic relevance of the concepts discussed within the text.

Contents

S. No.	Chapters	Page No.
1.	Introduction to Physical Sciences	01-02
2.	Fundamental Principles of Physics	03-33
3.	Chemistry in Physical Sciences	34-38
4.	Mathematics in Physical Science	39-43
5.	Applications in Medical Diagnosis	44-49
6.	Therapeutic Applications	50-55
7.	Case Studies in Diagnosis	56-61
8.	Case Studies in Therapy	62-92
9.	Ethical Considerations in Physical Sciences	93-95
10.	Future Directions in Physical Sciences	96-98
11.	Conclusion	99-100
	References	101-111

Chapter - 1

Introduction to Physical Sciences

Physical sciences explore the nature and properties of energy and nonliving matter. Branches such as physics and chemistry focus on the broad physical system encompassing humans, both at the level of an entire organism and at the subcompartmental level, including organelles and suborganellar structures. They provide the basis for modern diagnosis and therapy.

The fundamental principles of physics encompass a wide array of concepts, including key foundations of mechanics, comprehensive thermodynamics, intricate aspects of electricity and magnetism, as well as detailed studies in optics. Basic chemistry is an essential field that touches upon significant areas such as physical chemistry, biochemistry, and key chemical reactions that are crucial to understanding various processes. A brief yet thorough overview of the underlying mathematical principles involved highlights essential applications in the physical sciences, making clear their importance and relevance. Diagnostic applications in the realm of medicine encompass a techniques including diverse range of radiography, cardiovascular diagnostics, oncology diagnostics, neurology diagnostics, along with innovative biophysical and bioelectrochemical techniques. In the context of medical therapy, various modalities such as radiation therapy, ultrasound therapy, and laser therapy are meticulously examined for their effectiveness and applications. Several case studies serve to illustrate these applications in real-world scenarios, providing valuable insights. Moreover, ethical issues related to the use of physical methods in medicine are critically considered to ensure responsible practice. Future directions for physical sciences are briefly delineated, indicating potential pathways and innovations on the horizon ^[1, 2, 3].

Chapter - 2

Fundamental Principles of Physics

Physical sciences began with classical physics, whose principles have been incorporated into all areas of modern physics: quantum physics, atomic physics, nuclear physics, particle physics, and astrophysics. The classical disciplines serve as a foundation for the principles of physical sciences, which are also the key to understanding a broad range of diagnostic and therapeutic techniques and methods. In some cases, the physical principle is augmented to explain a particular effect. In this chapter, a snapshot of the fundamentals of classical physics is presented and constitutes the core of the physical-science foundation of this book.

Mechanics serves as the foundational pillar of all fields within physics as well as across the broader spectrum of physical sciences. These interconnected disciplines collectively describe an intricate hierarchy of complex phenomena, beginning with the classical laws of mechanics. At the core of these principles are Newton's laws of motion, which are elegantly coupled with the diverse realms of thermodynamics and electromagnetism. Modern physics further enhances these concepts, incorporating both quantum mechanics and relativistic theories. This includes foundational ideas such as wave mechanics and Velázquez's intriguing Parallel Universes Model, which invites us to ponder the complexities of existence and the fabric of reality itself. In the context of both diagnostic and therapeutic tools, the electromagnetic spectrum emerges as an essential element. It extends its reach from the realm of static electrical fields, which are pivotal in electrochemistry, to the equally significant static magnetic fields prevalent in the study of electromagnetism. Additionally, this spectrum encompasses a wide variety of electromagnetic waves, ranging from the lowest radiofrequency and microwaves to the exceedingly high-frequency light waves and even gamma rays. Visual radiation plays a crucial role, beginning with the fundamental use of light in microscopy. This simple application evolves into the use of sophisticated optical and fiber-optical instruments, as well as precision laser beams. Collectively, these technologies form an invaluable cornerstone that underpins a vast array of generalized techniques, moving from straightforward observation to highly advanced and intricately sophisticated applications across various scientific and medical fields [4].

Physics investigates the fundamental constituents of the Universe, encompassing matter and energy in their myriad forms. Matter-from electrons to quarks-occupies physical space, whereas energy, manifested in forms such as electromagnetic, kinetic, or thermal energy, exists differently. A further category pertains to the interplay of matter and energy:

Physics examines the principles underlying their interactions and mutual transformations. Understanding the Universe depends first on knowing the fundamental principles by which its constituents perpetually influence one another. Variations in these physical quantities determine modifications to matter and its ensuing dynamics. Precise measurement of physical quantities allows for the prediction of motion and other campaigns within a given physical framework. Consequently, mastering the fundamental principles and the art of measuring their associated quantities constitutes a primary requisite for physics.

Classical Mechanics is a mathematical theory of motion that employs space, time and a small collection of physical quantities. The core problem is the specification of the motion of a given physical system, while Newton's laws of motion are the dominant paradigm; their consequences have been scrutinized in detail; and the central concepts and strategies have been generalized in countless ways. The physical systems of interest include both individual particles and systems composed of many interacting particles. In addition, the canonical system has pointlike particles with no internal angular momentum (spin); extensions to continuous media, extended and deformable bodies, and spin are handled within the same core formalism [1]. However, classical mechanics fails at the atomic level. The main problem with classical mechanics is the treatment of light, which was solved by introducing the electromagnetic field as a dynamical entity. Furthermore, special relativity and quantum mechanics have been absorbed into classical mechanics at the same fundamental level of analysis. Conceptually, classical mechanics has become coextensive with physics, expression of a line of thought, and a widespread methodology that reaches beyond the traditional limits of physics [2].

Newton's Laws of Motion are the foundation of classical mechanics. In 1687, Newton stated three laws describing the relation between force, mass, and acceleration. First, an object at rest or in constant motion remains so unless acted upon by an unbalanced force. Second, the net force acting on an object equals the mass multiplied by its acceleration. Third, for every force applied on an object, there is an equal and opposite reaction force. The first law demonstrated that acceleration requires a net force. These laws are applicable to all everyday interactions between objects, from freely falling bodies to accelerating trains [3]. Collisions and other forces the object experiences must be considered when applying the laws.

The force of gravity, a key concept arising from these laws, causes freely falling bodies to accelerate toward the Earth. Once set in motion by a force, an object continues moving; a sled sliding along a level road, for example, will keep moving in a

straight line with diminishing speed due to friction between runners and ground ^[4]. No external force means a constant velocity or static state. The principles established by Newton provide the basis for the remaining concepts in classical mechanics.

Conservation laws play a central role in physics because they provide general principles that describe natural processes independently of particular frames of reference. They account not only for the steady-state nature of many processes but also for systemic stability. Consequently, they constitute a fundamental foundation for contemporary physical theories. Two main types of conservation laws exist, which differ in meaning and applicability ^[5].

The first type concerns quantities-physical, mathematical, or others-and states that such quantities do not change in the course of evolution, remaining invariant during system transformations. These quantities are widely used in various branches of physics and mathematics and are known as conserved quantities. The corresponding conservation laws are therefore termed exact conservation laws because they assert the presence of an exact conservative property, either of the whole physical system or of a particular physical object; these laws also describe the physical structures of these objects ^[6]. Field theories, for example, are based on exact conservation laws.

The second type encompasses those that establish the existence of a balance between the change of physical quantities and external actions affecting the system. Such relations occur in mechanics and in the physics of continuous media, as well as in other branches of physics and can be formulated for energy, linear momentum, angular momentum, and mass. Conservation laws of this kind are widely used in mechanics, physics of fluids, gas dynamics, and other fields. They are referred to as balance

conservation laws because they express a balance between variations of certain physical quantities and external influences. The equations describing these laws have the form of differential (in the case of continuous media) or integral (in the case of discrete systems) equations. The conservation laws that govern material systems (material media) pertain to the balance type.

The principles of thermodynamics are based on balance conservation laws and incorporate exact conservation laws for energy and linear momentum. When there are no external energy or force actions on the thermodynamic system, the 1st principle of thermodynamics reduces to the conservation law of energy. The 2nd principle of thermodynamics relates closely to the 1st and indicates conditions under which the 1st can be integrated. Thus, the 2nd principle establishes a connection with the conservation law of entropy, demonstrating that the entropy of the system constitutes a certain (internal) conserved quantity.

Rotational motion is more common and more complicated than translational motion; if the axis of rotation is fixed, then the system becomes considerably simpler and many problems of interest involve this case.

A particle is always specified by its position in space; a rigid body can move only as a whole and one does not need to specify the positions of all the particles of which the body is composed. The x-, y- and z-coordinates locate the position of the centre of mass and three other variables specify the spatial orientation in a coordinate system fixed in the body; the motion can be described by the movement of the centre of mass and the rotation of the body about the centre of mass. Because only three parameters are required, the dynamical treatment of rigid bodies is much simpler than the one of a system of N particles.

Motion of a rigid body can be looked upon as a combination of translation and rotation about an axis through the centre of mass. When the centre of mass is at rest, all the points of the rigid body describe circular paths about the axis of rotation; disserenct points of the body have circular trajectories of different radii but have the same angular velocity. Rigid bodies can therefore be considered as spinning: the particles of the whole solid rotate about the axis, but keep their relative positions unchanged.

Statics deals with a body either at rest or moving with uniform velocity in a straight line. The equilibrium of a particle is very simple and occurs when the resultant of the forces acting on it is zero; the motion of the particle can be neither accelerated nor changed unless some unbalanced force acts on it. The equilibrium of a body is quite different since, when two or more forces acting on an extended body have a zero resultant, the body is not necessarily in equilibrium. To characterize the rotation of a rigid body a new physical quantity called torque is introduced.

Energy transformations from one form to another lie at the heart of many physical arguments. The First Law of Thermodynamics provides an underlying conviction that the total energy remains constant. The Second Law of Thermodynamics places the conversion of this conserved quantity into a unidirectional flow that may not be inverted; this irreversible quality expresses the familiar day-to-day phenomena associated with dissipation and decay. Heat naturally propagates from one body to another by thermal conduction, convection, or a combination of the two. Many non-intuitive uses of the Laws of Thermodynamics continue to push forward the scientific envelope. The outcome of any process can be predicted by calculating a state function known as entropy, which measures the degree of microscopic disorder and statistical randomness. As the total entropy of the universe can never decrease according to this fundamental construction, the Second Law provides a rationale for the conversion of mechanical energy into heat. Associated potentials such as the Helmholtz and Gibbs functions

describe how various thermodynamic variables combine to influence the full-state character of the system. The modern formulation leads to a deeper understanding of its relationship to conservation of energy and corresponding thermodynamic derivatives [7-8]. The study of matter and energy, and their interactions, occupies a fundamental place among the sciences. Throughout recorded history, many famous thinkers have sought to gather under a unified set of principles the many observations pertaining to the physical world. Laws of Physics, as they are now called, constitute a bridge of understanding connecting knowledge already obtained with truths yet to be discovered.

At the center of most Laws of Physics rests the concept of energy and the ways in which it can be transformed. Conservation of energy, and the mechanical equivalents of heat and other forms of energy, provided the basis for the development of the laws of thermodynamics. These laws then supplied the motive force behind the myriad inventions of the Industrial Revolution. No modern student of science, engineering, or technology can afford to be ignorant of these basic laws.

All heat engines operate in accordance with the laws of thermodynamics. When William Thomson (later Lord Kelvin) first investigated the foundations of the new science of thermodynamics, the temperature scale bearing his name was still without a defined zero point. Thomson based the definition of thermodynamic temperature on the equivalence of Carnot cycles, which has the advantage of being independent of specific properties of any molecular model of matter. The general relations between parameters characterizing the state of a homogeneous system in thermodynamic equilibrium were clarified by Gibbs, following foundations established earlier by Clausius. Thermodynamics obtained an atomistic basis with the development of statistical mechanics and the introduction of Boltzmann's expressions for entropy.

A considerable body of material now exists concerning the Name Matter can be produced by the conversion of energy according to the famous equation of Einstein. However, the energies involved are so large that no such conversions have yet been achieved in the laboratory. This section of the chapter is intended only as an introduction to several of the most important laws of physics developed during the past few centuries, which form the foundation upon which the whole edifice of science has been built. These laws provide an essential starting point for the study of funda-mental principles of physics and their applications.

Heat transfer is a mechanism for energy transport ^[9]. Understanding heat transfer is crucial for evaluating energy fluctuations or transformations and optimizing thermal systems. Energy transfer by heat occurs through temperature gradients between two reservoirs and can be achieved via four distinct mechanisms: conduction, convection, radiation, and phase changes.

Thermal energy transfer is a process function, depending on the manner in which the transfer proceeds rather than merely on the initial and final states. Accordingly, the amount of heat transferred is calculated by means of the heat transfer coefficient, which relates heat flux to the thermodynamic driving force. Heat flux quantifies the flow of heat through a surface. Transfer equations for thermal energy, momentum, and mass exhibit formal similarities, and analogies have been developed to predict conversions among these forms.

Thermal engineering pertains to the generation, utilization, exchange, and conversion of heat and associated energy forms. It plays a pivotal role in various sectors of the economy and addresses a broad spectrum of engineering problems. The mechanism of heat transfer spans a wide range, from the

ultrasmall to the astronomical. Heat transfer in practical thermal systems is enhanced because of relative motion between the heat-fluid interface and the fluid.

Conduction dominates heat transfer in solids, while gaseous and liquid environments favor convection. Fluid flow encountered in heat transfer applications can be laminar, turbulent, or mixed. Heat exchange between one surface and another is always governed by conduction; however, fluid presence allows thermal energy exchange through radiation and convection. Indirect evidence suggests that conservation of energy provides a fundamental limitation, so the energy gained by one surface corresponds to energy lost by another, given that the overall system remains thermally isolated. Various flow geometries-parallel or crossflow for the fluid media and surface types such as flat plates, wires, fins, and tubes-necessitate specific correlations to determine the heat transfer coefficient, commonly expressed in terms of the Nusselt number. These correlations are applicable only to conduit flow without phase change. In the absence of generally valid correlations for phasechange heat transfer (boiling or condensation) the subject is considered separately. Radiation-induced heating is often ignored and considered only when problems require combined heat transfer analysis.

The second law of thermodynamics predicts the tendency of internal thermal energy to degenerate into unusable forms. Energy in a certain form is called available energy [8]. The degree to which energy has degenerated away from available forms is measured by entropy, a variable often called the energy quality factor. The total entropy of an isolated system can never decrease, as entropy is the inability to extract usable energy from a system [10]. The principle of entropy is derived from the Carnot cycle, which builds on the first law of thermodynamics. Empirically, the internal thermal energy of an isolated system is

constant, but its availability can decrease, as exemplified by Kelvin's postulate or the Clausius statement of the second law of thermodynamics.

Electromagnetism studies electric fields E, magnetic fields B, and their interplay with matter. Coulomb's Law quantifies the force between two-point charges: opposite charges attract and like charges repel with a magnitude proportional to the product of the charges and inversely proportional to the square of the distance separating them [11]. The electric field, a vector function defined as the force per unit charge, describes the electric influence that a source charge exerts at a given point.

When charged particles move, the force on each includes velocity-dependent contributions. The complete description is given by the Lorentz law, $F=q(E+v\times B)$, where B is the magnetic induction field related to the magnetic field intensity H by $B=\mu 0$ H; $\mu 0$ denotes the permeability of free space. Electric and magnetic fields, each a function of position and time, govern the behavior of charges.

Electromagnetic induction establishes that a changing magnetic flow through a closed circuit drives an electric current within it ^[12]. Accordingly, varying magnetic flux induces an electromotive force in the conductor. The continuous mutual generation of time-dependent electric and magnetic fields constitutes the foundation for the classification of e/m disturbances as wayes.

The electric and magnetic fields comprise energy flows responsible for radiation phenomena. Polarized radiation originates in electric field modes. Consequently, the fundamental fields involved in radiation processes and interactions with matter are the vector electric field, the vector magnetic field, and the scalar potential [13]. Electric fields represent the environment that permeates charged bodies and can be characterized by the

force imparted on an external test charge q located at a given position. This force divided by q, a vector quantity, defines the electric field intensity at that location. For a polarized test charge, the direction of the electric field vector corresponds to the force direction on a positively charged particle; for negatively charged particles, the field vector points opposite to the force direction. The electric field, denoted by E, is mathematically described as the force on q divided by q, E = F/q. This relationship must hold regardless of test charge value, provided that its magnitude remains sufficiently small to avoid perturbing the field source distribution [14]. Field physics finds its origin in Faraday's introduction of magnetic fields, electric fields, and light as an electromagnetic wave. This development initiated a conceptual framework wherein nature comprises matter and fields, endowing fields with evolving physical significance. Faraday lines of force associate physical entities such as electric charge and mass through their dependence on fields. Extending this framework to nonlinear abelian electromagnetism introduces the Four Bosons EM model, whose phenomenology entails charge transmission mediated by a quartet of bosons. The corresponding nonlinear equations give rise to new Faraday lines and facilitate the construction of universal potential fields. Consequently, four distinct types of field charges emerge: electric, modulated, neutral, and Bianchi. This systematic associative physics establishes a mechanism whereby mass and charge arise from four interrelated fields. Masses emerge naturally from gauge symmetry considerations and mixing terms without recourse to spontaneous symmetry breaking. Electric charge manifests directly in terms of fields via the Noether theorem. Furthermore, electromagnetic interactions not inherently coupled to electric charge become conceivable, along with an attendant enlargement of electromagnetic energy.

Magnetic fields were introduced by Faraday (1831), who also presented electric fields (1837) and light as an electromagnetic wave (1846), initiating the conceptual framework where nature comprises matter and fields. The notion of fields thus established a physical substrate under development. The central question remains how extensively matter arises from fields. Matter generation from nonlinear fields is explored through Faraday lines of force that relate physical entities such as electric charge and mass to the underlying fields [14].

The Biot-Savart law expresses the magnetic field at any spatial point arising from an element of current-carrying wire. The differential magnetic field is proportional to the current, the element length, and the cross product of the unit vector from the current element to the point in space, divided by the square of the distance. A certain amount of symmetry is needed in the geometry of the current-carrying wire for the final integral to be solved easily. Calculating the magnetic field produced by a circular current-carrying loop along its axis employs symmetry and is straightforward. Determining the field at points off the central axis or for multiple loops and coil arrangements such as Helmholtz and Maxwell coils is far more challenging. Helmholtz coils generate uniform magnetic fields within small regions and serve in studies of magnetic properties, cancellation of Earth's magnetic field, atom trapping, and laser cooling [15]. The superposition principle enables determination of the total magnetic field by vectorially adding contributions from individual coils. The field generated by a single loop of radius R carrying current I in the xy plane is mathematically defined, but off-axis calculations lose symmetry and become difficult.

Changing magnetic fields are the source of electric fields. These induced fields generate electromotive forces and currents that the flux of the magnetic field does not explain [16]. The flux rule constitutes therefore a calculation shortcut that does not

represent the physical law serving as the true foundation for electromagnetic induction. The more general law follows from taking into account the motion of the circuit and the velocity of the charges [17].

The study of vibrations constitutes a critical branch of physics because vibratory motion recurs in many systems, ranging from the smallest particles to galactic aggregates. Oscillatory motion obeys several models that provide simple but useful approximate descriptions of actual displacement-time patterns in the vibratory regime. Simple harmonic motion represents one of these fundamental theoretical formulations, from which are derived other model types such as damped and forced harmonic motions. Several methods are employed to obtain the differential equation that describes the simple harmonic oscillator. More significantly, the subsequent investigation addresses the conversion of this linear oscillator equation into a nonlinear one, deriving a novel form of the nonlinear equation [18].

Simple harmonic motion involves harmonic behaviour occurring under the influence of an elastic restoring force without friction. It forms the basis for investigating and understanding vibrations in solids, the transport of sound waves in air, particle oscillations transmitting energy through solids, and the operation of radio, television, and mobile phones. A wave phenomenon arises when the disturbance produced by a vibrating source propagates to another location; however, this propagation does not imply a corresponding transfer of the medium itself. Ocean swell illustrates this concept by traveling thousands of kilometres in a few days without facilitating substantial movement of water across the Atlantic Ocean. Instead, an energy or disturbance wave moves through the medium, inducing only localised oscillatory displacements in the material. The wave speed is a function of the properties of the medium, such as its elasticity and inertia. Although water waves rank among the most readily observable types, their highly nonlinear behaviour renders them exceptionally challenging to treat effectively with elementary physics. Nevertheless, the physics of waves is of fundamental importance, as solids, liquids, and gases serve as media for conveying energy and information by means of wave motion. This process enables a local effect at one point to be connected with a remote cause elsewhere; information transmission by wave motion depends on the propagation of a boundary or wave front through the intervening medium after a finite time interval determined by the medium's characteristics [19].

Simple harmonic motion (SHM) constitutes one of the fundamental concepts in physics, describing a broad range of vibrational phenomena found throughout nature-from particles at the microscopic scale to cosmic structures ^[18]. Many types of oscillatory processes, such as a swinging pendulum, vibrating string, or rapidly oscillating wheel, can be approximately represented by a simple harmonic oscillator (SHO). A motion described by sine or cosine functions, driven by elastic forces without dissipative effects such as friction, qualifies as SHM. The classical SHO plays a significant role in both classical and quantum mechanics, serving as a foundation for analyzing more complex systems.

SHM can be defined as a periodic back-and-forth motion in which the restoring force on a particle is proportional to its displacement from an equilibrium position. Examples include swings, tuning forks, and certain electrical circuits. Although in practice, no situation exactly satisfies the strict conditions of SHM, the model provides a reasonable approximation for many physical systems by neglecting friction and other minor influences. Prior to engaging with the detailed study of SHM, a clear understanding of kinetic energy, potential energy, conservation of energy, angular velocity, acceleration, displacement, torque, and rotational dynamics-especially Newton's second law for rotation-is advisable [20].

Wave motion involves a condition transmitted through a medium without the medium itself moving significantly, as seen in ocean waves and distant sea swell traveling at high speeds. All matter media-solids, liquids, gases-can carry energy and information via waves. Waves on water are complex to analyze, so they are not discussed in detail here. Prior knowledge needed includes sinusoidal particle motion and partial derivatives of functions of two variables. Learning objectives include understanding wave properties and their transmission through media [19].

Differing from established concepts like the Wave Potential-which causes mutual perpendicular coupling between monochromatic rays and underlies wave-like features such as diffraction and interference-and treatments based on statistical ensembles and wave-packets, the following sections describe wave phenomena solely in terms of deterministic processes [21], with the intent of laying groundwork for subsequent discussion on Sound Waves as examples of mechanical wave phenomena (5.3).

Sound waves constitute an ordinary phenomenon in everyday life; they are, in quantum physics, famous as particle-like vibrations in a condensed medium, termed phonons. Many nontrivial wave phenomena exist, including interference, beats, the Doppler effect, shock waves, and sonic booms. A sound wave constitutes a travelling longitudinal mechanical wave through a medium, the particles of which oscillate with amplitudes that are quite small in comparison to their wavelengths. Examples include acoustic waves in air, water, the ground after an earthquake, and lattice vibrations in crystals. A sound wave involves local vibration of the pressure and displacement of the particles of the medium. Such vibrations in the displacement of the particles are local oscillations of the particles about their equilibrium position causing a mechanical wave to propagate through the medium.

The medium can be a solid, liquid, or gas. Sound waves do not propagate through a vacuum. Sound waves in gases and liquids are longitudinal, whilst sound waves in solids can be either longitudinal or transverse. Sound waves propagate as adiabatic variations in pressure. Similar variations travelling at different speeds and prepared with several different initial conditions can be related to special cases of simple waves giving rise to different physical phenomena.

Michelson developed sensitive measurements of small distances based on optical interference. The resulting technique of optical interferometry has widespread application. For example, Michelson designed an interferometer for detecting the aether wind predicted by the theory of light of the time. Fresnel had predicted that the aether would be carried along by a moving body, and this was to be taken into account in the analysis of the aether-wind experiment. Optical interference is also used in many other measurement methods, such as the Fabry-Pérot interferometer and the Hanbury Brown and Twiss array for astronomical interferometry and holographic methods [22].

Reflection and refraction are phenomena occurring at the boundaries between media. Reflection is the change in direction when a light ray bounces off the surface of a medium and returns into the original medium. Refraction is the bending of a light ray as it passes through the boundary between two media ^[23]. The law of reflection states that the angle of incidence equals the angle of reflection. The law of refraction (Snell's law) relates the angles of incidence and refraction to the indices of refraction of the media.

The laws of reflection and refraction apply to simple devicesthin lenses and spherical mirrors-used in optical instruments. Problems related to these devices are solved by drawing ray diagrams and using the mirror and thin-lens equations. Calculations of lateral magnification follow from these approaches. Mastery of these concepts provides the foundation for more complex systems. Familiarity with the laws of reflection and refraction, including Snell's law, is a necessary prerequisite [24].

Wave-particle duality is a fundamental property of matter and a mystery of modern physics. A new interpretation proposes that quantum particles are temporary objects born in a wave field and spontaneously decay due to their instability. This offers a physical meaning to creation and annihilation of particles as used quantization. The traditional probabilistic second in interpretation of quantum mechanics, via Born's rule, emerges as an approximate consequence of this theory. It explains the particles indistinguishability of quantum and meaninglessness of their trajectories. An explanation of the Heisenberg uncertainty principle within this framework allows a return to an objective understanding of the measurement process, without considering it as a fundamental part of the physical process [25]. Introduced by Einstein in 1905, wave-particle duality showed that light can also be explained as particles (quanta) with energy and momentum in agreement with experimental phenomena such as the photoelectric effect and Compton scattering. Precision experiments demonstrated that light's wave properties cannot be attributed solely to photon flux interactions; instead, each photon possesses wave properties and can undergo interference, raising fundamental questions about how matter can exhibit both wave and particle properties and what constitutes a photon [26].

Fundamental laws of physics are considered to accurately describe physical reality, although no direct experimental results are exploited ^[27]. Explaining the principles underlying these laws is challenging, due to incomplete knowledge of most members in the particle family (elementary and stable, free and bound,

particles and antiparticles; Bosons, Fermions, etc.). Existing theories, including classical physics, the special theory of relativity, and Copenhagen quantum mechanics, each apply to limited regions of physical reality; transitions between them remain obscure. Generalized classical physics succeeds by modifying the original form of Newton's law, replacing constant masses with velocity-dependent expressions. This approach unites the previously disparate regions and removes all mutual contradictions, thus providing the key. It is necessary to distinguish between microscopic and macroscopic states. Understanding fundamental principles constitutes the first step toward a nearly complete set of laws of physics.

The principle of relativity was first enunciated by Galileo in 1632, then fully integrated in Newton's mechanics in 1687 and formulated by Einstein in 1905 in an extended form known as special relativity. It states that the laws of physics are invariant under a transformation from one inertial frame to another. That is, the equations describing physical phenomena apply equally well in all inertial frames and no inertial frame is physically distinguished from another with respect to these laws. The validity of the relativity principle for a certain set of physical phenomena is required to ensure that these phenomena can set up an operational definition of an inertial frame. The complete form of the principle is, however, weakened by the existence of privileged frames appearing when certain phenomena are not considered and the laws governing these are only valid in a subset of the inertial frames [28]. Consequently, the principle must be stated together with a list of all the phenomena it applies to. The principle is, nevertheless, always meaningful when formulated in this manner ^[29]. The Galilean principle of relativity combines space-time geometry and light properties with the law governing velocity addition to assert the equivalence of inertial frames. With light regarded as a physical signal propagating at a finite

speed, the principle naturally leads to the Lorentz transformations rather than the Galilean transformations when changing from one inertial frame to another [30].

Quantum mechanics is a fundamental branch of modern physics concerned with the mechanical behavior of matter and radiation on the atomic scale [31]. The theory relies on a set of foundational principles, including the wave principle, which states that any quantum-mechanical system should be described by a complex-valued wavefunction of coordinates and time; the probability principle, which relates the modulus squared of the wavefunction to the probability density of finding a system in a particular configuration; and the principle of physical invariance under Galilean transformations, which dictates Schrödinger equation be consistent with Galilean relativity. Other general conditions further delimit the physical content of the theory. The overall scheme is fully deterministic; although the argument of a wavefunction in a given setup cannot be obtained from measurements, the initial wavefunction itself determines the system's time evolution in a precise manner; the presence of the modulus squared in the probability principle enforces a consistent theory. Atomic systems are stable because only solutions of the Schrödinger equation for bound systems are standing waves. Forces between two particles that depend on distance enforce boundary conditions that restrict the values of the parameters in the wavefunction, yielding quantized allowed states. These considerations explain Bohr's quantum conditions and the existence of discrete spectral lines emitted by excited atomic systems [26]. Additional fundamental concepts include the principle complementarity; Heisenberg's uncertainty of principle; the probabilistic interpretation of the wavefunction; the existence of intrinsic angular momentum, or spin; and an exact calculation of the bound-state energy of a particle in a square potential well with two internal barriers; all states except those of

zero energy are confined, even when the barrier height is lower than the energy of an incoming particle.

Matter exists only in discrete energy states: atoms, molecules, or solid substances can only carry definite amounts of energy, corresponding to those states. At the microscopic level, only specific energy amounts can be absorbed or emitted; the rest cannot be acquired by these energy carriers. In the quantum-mechanical framework, photons, electrons, and nuclei only occupy discrete energy states; transitions between such states introduce the idea of discrete energy absorption or emission [26].

An atom usually consists of a tiny heavy nucleus surrounded by light, negatively charged electrons. The attractive Coulomb force between electrons and the nucleus has a rotational-symmetry structure with respect to the nucleus; thus, the angular momentum vector of electrons is an important describing parameter. Angular momentum is quantized and of order $\hbar = h/2\pi$, rather than h, which explains the resolution of classical-physics inadequacies.

The atomic nucleus nurtures both fundamental and applied physics. Nuclear reactions, induced either by bombardment of a target or spontaneously from an unstable system, serve as the principal tool for nuclear studies. Radioactivity, coupled with the mystery of elementary particles, has always been an issue of great interest to researchers. Nuclear physics contributes to many diverse aspects of nature, with one of the facets being the investigation of the nuclide chart from which the existence of exotic nuclei has already been established [32]. There are numerous applications of nuclear physics, and new developments continue to appear. Because the nucleus constitutes the very essence of the atom, its existence affects every phenomenon in nature. A quantitative understanding of nuclear physics also offers insight and opportunities both in theoretical and practical

situations, from atoms to stars. It shapes the past and future of civilizations. Radiation no longer governed the universe, and small clumps of neutral matter steadily grew-in the form of atoms, molecules, gas, clouds, stars, and galaxies.

Stars and many explosive astrophysical events are powered by nuclear reactions. Such processes change nuclear abundances and produce energy at the same time. Hence, understanding nuclear properties, nuclear reactions and their reaction rates is crucial to describe the astrophysical phenomena. The relevant reactions at astrophysical plasma temperatures involve a variety of isotopes which are not always accessible to experiments. Thus, nuclear theory is essential to determine the needed nuclear input and reaction rates. Low-energy charged-particle reactions in hydrostatic burning and neutron-induced reactions in the s, n and m processes have received considerable attention. Equally important for a variety of other nucleosynthesis scenarios are reactions involving light reaction partners, such as nucleon- and α-induced reactions. Sensitivities of astrophysical reaction rates to uncertainties in nuclear structure and reaction parameters and an overview of theoretical and experimental efforts to determine these quantities are given. Nuclear reactions in stars and in explosive scenarios occur in thermalized plasma having a charge distribution similar to a Maxwell-Boltzman distribution at a given plasma temperature. Nuclear transitions between excited states in the plasma rapidly reach thermal equilibrium before the reactions can take place and therefore the maximally possible number of nuclear states participates in a reaction. This implies that the target nucleus is not only in its ground state but also in some excited state j at the time of the reaction, which occurs with a probability proportional to Wjexp(-Ei/kT) [33]. Through the strong, electromagnetic and weak interactions matter, radiation, neutrinos and electrons and positrons are strongly coupled. It can be shown that electron screening has no effect on the stellar rates but alters the reaction yield in the laboratory. Nuclear reactions occur in a variety of different ways. The dominating reaction mechanism depends on the geometry of the system and the relative energy of the particles due to different sensitivities on nuclear level spacings and widths. At even higher energies and/or for certain reaction channels direct reactions dominate while at slightly lower energies intermediately between resonances, statistical contributions may become important. The relevant astrophysical rates are introduced along with an abbreviation of the basic equations for nuclear processes in astrophysics. Relevant energy ranges are defined and stellar effects, reaction equilibria and charge screening are analyzed, considered together with the importance of different reaction mechanisms, including resonance and direct reactions. Finally, the sensitivities of the astrophysical rates to the underlying nuclear input and the need for further experiments is briefly discussed.

First discovered by Becquerel in 1896, the phenomenon of natural radioactivity is universally observed both on Earth and in space [34]. Originating from nuclear reactions within Earth's interior, radioactivity significantly influences geological processes. The steady disintegration of radioactive isotopes since the cessation of planetary formation approximately 4.6 billion years ago serves as a reliable time scale for understanding planetary and stellar evolution. Nevertheless, human or industrial development can introduce significant quantities of radioactive and nuclear materials into the environment, posing serious contamination risks. Radioactive isotopes-now routinely produced for a wide spectrum of applications, notably in medical diagnostics and radiotherapy-have been employed in geological studies and environmental pollution monitoring in various countries, allowing widely separated samples to be dated quite accurately.

Nuclear physics has a broad range of applications including fusion. physics, nuclear reactor nuclear proliferation, nuclear geophysics, and nuclear medicine [35]. Early applications emerged soon after the discovery of radioactivity in 1896 and accelerated during World War II, leading to technologies for nuclear explosions, controlled energy, and fusion. Contemporary developments encompass diagnostics for nuclear explosions, nuclear reactor safeguards, and detection of trafficking in special nuclear materials. Advances in nuclear geophysics address geo-chronology, nuclear logging, the Oklo phenomenon, and geo-neutrinos. The field of nuclear medicine has achieved critical progress in imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), targeted radionuclide therapy, and the production of medical isotopes.

Nuclear reactions are a fundamental aspect of astrophysics because they provide an important source of energy and change the isotopic composition of matter [36]. Progress in the field has come about through experimental and theoretical advances in astrophysics. Information from the photon spectrum permits measurements in optical and γ -ray astronomy as well as in studies of the cosmic microwave background. Neutrinos emitted by the Sun and by supernovae have been detected, and future measurements in this area are expected to help resolve outstanding questions. Cosmic rays and isotopic studies within the solar system give additional insight. The elemental abundances observed in the Universe arise from nuclear processing in Big-Bang, stellar, and cosmic-ray scenarios. Topics discussed include Big-Bang nucleosynthesis, production of neutrinos by the Sun, explosive nucleosynthesis in novae and Xray bursts, heavy-element nucleosynthesis, and aspects of nuclear physics related to neutron stars.

To date, knowledge of nuclear physics is based mainly on studies of radioactive decay and nuclear reactions induced by beams of stable or long-lived nuclei. The nucleus, which consists of many nucleons, is governed by multiple degrees of freedom. The relationship between temperature (or excitation energy), angular momentum, and neutron-to-proton ratio defines a three-dimensional landscape that can be explored experimentally. Experiments at higher energies, notably attempts to produce quark-gluon plasma in heavy-ion collisions at CERN and RHIC, have advanced the field into new regimes. Very high angular momenta (50-80ħ) have been achieved through grazing-angle collisions between heavy ions, providing new insights into nuclear dynamics. Searches for superheavy nuclei constitute another important area of experimental research [32].

Humankind's astronomical conjectures and observations date back to prehistoric times. Astrophysics-the branch of physics devoted to the study of phenomena farther from Earth than the Moon-has developed rapidly, alongside modern cosmology. The Big Bang is the prevalent framework for the origin of the observable Universe, predicting its expansion and models for large-scale structure. Observations such as hydrogen abundances and the cosmic microwave background radiation bolster this theory, leading to questions about the origin of matter. The evolution of stars is now well understood from their formation in clouds of interstellar debris to end states as white dwarfs, neutron stars, or black holes, depending on mass. Black holes arise as a consistent consequence of General Relativity, confirmed at scales. Processes responsible for other diverse astrophysical phenomena, such as quasar emission and gammaray bursts, remain less well understood

Despite excellent progress in physics during the last century, there remain unsolved questions concerning the origin and future of the Universe. Cosmology studies these fundamental problems, including the early stages of the Universe and the formation of structures such as stars and galaxies. Technology also plays an important role in cosmology, as telescopes and spacecraft provide data at the outer limits of the Earth's atmosphere that permits the testing of physical theories under extreme conditions

The evolution of stars is a multi-step process depending on the initial mass and chemical composition. During the formation stage, a prestellar nebula contracts and cools; the gravitational energy lost drives the star seed far away from local thermodynamic equilibrium, generating complex processes of accretion. The first phases of evolution, before the zero age main sequence (ZAMS), are difficult to characterize as several internal and external processes occur concurrently, making the star unstable and heavily obscured by the remnant accreting material. After ZAMS, the star quickly settles down to thermal equilibrium in a long-lasting evolutionary phase along the main sequence. When all residuals of accreting material are expelled, the surrounding environment becomes transparent, and the star surface properties can be detected and accurately measured.

At the end of the main sequence, the contraction of the helium core releases energy, causing a rapid increase of the effective temperature and a slow variation of luminosity, until gravitational contraction is repressed by central ignition of helium burning. This phase, where the temperature remains rather constant but the luminosity increases, is usually known as the red giant phase. Phase diagrams show abrupt changes in structure, resulting from variations in the internal nuclear history [41]. A star with solar metallicity and mass above 1.3 solar masses generally ignites central helium under nondegenerate conditions, leading to a smooth transition. In contrast, stars with lower masses and similar composition ignite helium at the tip of the red giant branch with a flash, producing extended loops in the Hertzsprung-Russell diagram that last several million years [42].

Black holes continue to provide profound insights into the nature of gravity and the space-time structure ^[43]. The semiclassical properties of a black hole characterized by the Kerr-Newman line element with mass M, charge Q, and angular momentum J lead to a horizon area

 $A=4 \left(2 - Q^{2} + 2M \right) {\left(M^{2} - Q^{2} + 2M \right) } {\left(M^{2} - Q^{2} - J^{2} \right) } \left(M^{2} - Q^{2} - J^{2} \right)$

The classical attractor dynamics and horizon hide the initial field configuration as well as the partial information stored in the collapsing matter ^[44]. The horizon area law naturally corresponds to the second law of thermodynamics. Starting from this observation, one may associate the entropy S with the horizon area A. Hawking's result then supports the identification of a black hole temperature

 $T = {\extstyle\frac{\extstyle \kappa} {\extstyle 2\kappa}} in terms of the coefficient of the surface gravity \kappa which appears in the commutation relation[l_{a}, \kappa] = {\extstyle\frac{\extstyle\kappa} {\extstyle 2\kappa}} 1{a}$

The constructive role of Semiclassical Gravity is to provide concrete insight into the elusive mechanism of black hole radiance [45].

The laws of physics impose stringent constraints on the structure of physical systems and have an intrinsic interconnectedness that transcends any deliberate organization of experimental and theoretical physics. Isolated observations of nature confirm the occasional occurrence of individual principles but are incapable of demonstrating their exhaustive sufficiency as a comprehensive framework. The validity of a set of laws or wider theories generally hinges upon its coupling with complementary principles- understanding their interrelationships is a prerequisite not only for the elucidation of specific systems,

but also for formulating additional yet undiscovered prescriptions, and for interpreting novel interactions involving components previously deemed unrelated within a physical system

2.1 Mechanics

Mechanics is the branch of physics that deals with the motion of objects in the universe. This very broad topic can be subdivided into further disciplines, with the kinetic effects of particles studied in gas laws, kinetic theory, statistical mechanics, thermodynamics, and hydrodynamics. Simple dynamics model a particle as a single point and study its linear or angular kinematic quantities such as position, velocity, and acceleration, and the forces acting on it. Other types of mechanics divide objects into three-dimensional rigid bodies, deformable bodies, or non-rigid continua.

In the field of medicine, a straightforward mechanical model can significantly assist in grasping the complex process of how airborne particles deposit themselves within the lung. Consider a particle possessing a mass denoted as m, which moves at a velocity represented by u, while encountering viscous drag from the surrounding air that has a velocity defined as v. The force of drag or resistance due to friction that acts upon the particle, ultimately bringing it to a halt in relation to the air, is mathematically represented by the equation $F = 3\,\phi$ d(u-v). In this equation, \eta serves as an indicator of the viscosity or the 'thickness' of the air, while d refers to the dimensions or size of the particle in question. By applying Newton's second law, expressed as F = ma, we understand that a refers to the acceleration experienced by the particle as it moves. Furthermore, a functional form that describes inertial impaction can be delineated as the multiplication of the mechanical quantities that are instrumental in guiding this process. This is

expressed as $\text{textnormal}\{\text{inertial impaction}\} = \hdots d^2 u i / \eta,$ where \rho represents the mass density of the particle, and u i accounts for the velocity at the bifurcation point or vent within the respiratory system. When the particle arrives at a bifurcation, it persists in maintaining its original velocity and path, which allows it to enter the side of the bronchiole, effectively maneuvering or "ferreting" in an inertial manner. Both inertial and gravitational forces that relate to a model of deposition can be quantified and measured utilizing mechanical terms. An additional example, which has not been published yet, employs mechanics to define the force (F) that is required to provoke a protective or reflex response: this force can be calculated using the expression $F = \cos \phi (Mg / \mu)$, in which \phi represents the angle of the tendon in relation to the bone, M indicates mass, g stands for gravitational acceleration, and \mu is identified as the coefficient of friction. Through this understanding, the interactions of particles in the respiratory system can be better elucidated [5, 6].

2.2 Thermodynamics

Thermodynamics provides a powerful framework that facilitates the construction of streamlined models, thus significantly improving our comprehension and predictive abilities regarding various phenomena. This approach not only enhances our understanding but also bolsters the design and control of complex systems in diverse fields. The fundamental concepts that define thermodynamics include energy, entropy, and exergy balances, as well as their interactions and flows within systems. A crucial aspect of thermodynamics is the availability of exergy, which plays an essential role in shaping the evolution of open systems across the continuum of space and time. In contrast, isolated systems undergo changes that lead to the maximization of entropy while simultaneously minimizing exergy as time progresses. This aspect of thermodynamics

functions as a vital theoretical cornerstone, enabling us to piece together the intricate puzzle of physical sciences. It effectively disciplines, including unites various electromagnetism, and quantum mechanics, fundamentally through the processes of energy transfers and transformations. Moreover, the detailed analysis of irreversible thermodynamic processes forms the basis for the functionality of numerous devices and systems, particularly those utilized in clinical applications and other technological advancements. underscores importance interconnectedness the thermodynamics in a wide range of scientific and engineering contexts [7, 8, 9, 10].

2.3 Electromagnetism

Electromagnetism is essential to numerous medical diagnostic and therapeutic applications, as well as to the intricate biochemical processes governing both health and disease. Nonionizing electromagnetic (EM) spectrum technologies span frequencies from static fields to terahertz (THz) waves, enabling a diverse range of established and emerging clinical uses. Magnetic resonance imaging (MRI) employs static magnetic, gradient magnetic, and radiofrequency fields, solidifying its status as a mature modality with a robust international market. Electrosurgery and diathermy are widely utilized for muscle pain treatment, and vagus nerve stimulation for drug-resistant epilepsy is rapidly gaining clinical acceptance. Other procedures, including hyperthermia for tumour control and pulsed EMF for bone healing or reparation, are also implemented but lack definitive mechanistic explanations and possess less conclusive evidence. Anticipated advancements extend to novel therapeutic avenues targeting neurodegenerative and inflammatory diseases and innovative applications of THz radiation.

Current evidence strongly indicates that both therapeutic and diagnostic exposures to electromagnetic fields (EMF) at

clinically relevant field strengths do not induce any form of harm to individuals who are undergoing treatment or examination in medical settings. As a result, safety criteria recommend minimizing any unnecessary exposure to these fields whenever possible to further protect patients and staff alike. Various authorities, including the highly respected International Commission on Non-Ionizing Radiation Protection (ICNIRP), routinely review and update exposure guidelines to ensure their ongoing relevance and effectiveness. They tailor these recommendations specifically to various frequency bands, thereby ensuring continuous and comprehensive protection for individuals against potential risks associated with EMF exposure. This careful and systematic approach reflects a deep commitment to public safety and health in the context of medical applications, instilling confidence in patients and healthcare providers regarding the use of EMF in modern therapeutic and diagnostic procedures [11].

2.4 Optics

Biomedical optics is a constantly developing branch of modern optics ^[12]. Optical instruments and new approaches for measuring and processing data pave the way for countless innovative diagnostic methods and devices. The rapid progress of photonics methods in research and medicine is largely due to the unique properties of controlled low-intensity light radiation, such as noninvasiveness, low cost of devices, nonionizing radiation, ease of implementation, possibility of a wide variety of applications, and an extensive range of operating wavelengths. These characteristics suggest that optical diagnostics will become a leading technique in the upcoming decades, making the search for new diagnostic capabilities with light extremely promising.

Optical methods possess considerable potential in medicine; however, many of their capabilities remain unexplored.

Continued research with existing technologies and the development of new optical techniques are expected to contribute significantly to understanding physiological mechanisms and various pathologies. Typical investigations of new methods in diagnostic applications include tests on model objects, research on animals, and clinical trials on humans.

The transition from fundamental developments to clinical adoption in optical diagnostics is undertaken progressively, first in oncological tasks, followed by studies in cardiovascular, neurodegenerative, and other fields.

In recent years, there has been a significantly increasing interest in the detailed investigation of the mechanical properties, elasticity, and deformation characteristics of biological tissues and various media. This growing focus is primarily achieved through the application of the elastic shear modulus, which serves as a critical parameter in the assessment of these properties. Advanced optical methods and elastography techniques provide robust means for obtaining such estimations, enhancing our understanding of tissue mechanics. These innovative approaches also contribute significantly to informing the design of instruments that aim to obtain diagnostic value that is comparable to established techniques, such as ultrasound methods and magnetic resonance elastography. This integration of methodologies holds great promise for improving diagnostic accuracy in the medical field [13, 14, 15, 16].

Chapter - 3

Chemistry in Physical Sciences

Physical sciences are the disciplines that study non-living systems and include four fundamental areas: physics, chemistry, astronomy, and Earth sciences. These areas rely on mathematics as a quantitative tool. Physics and chemistry constitute the foundation for all physical sciences, providing a basis on which the others rest. The study of physical sciences offers valuable insights into the design of novel materials with enhanced strength, tailored optical and electronic properties, desirable chemical characteristics, favorable thermal conductivity, and cost-effectiveness. Research in this field has significantly advanced medical diagnosis and therapy.

Chemistry examines the composition, structure, properties, and change of matter. Knowledge of chemistry is essential since the human body and all objects are made up of various atoms. The section on chemistry in physical sciences aims to provide an understanding of the science relevant to biological and medical applications [17, 18, 19].

3.1 Basic chemical principles

Chemistry is the science of matter and change. How is matter put together? How does it behave? What happens when two substances are mixed? To a large extent, answers to such questions determine what industrial and medical processes are possible. What is the chemical composition of the drug under development? What will be its effects? What are the fundamental chemical principles involved? How does the composition of the

living cell react under the influence of external radiations? What happens to living matter when it is subjected to the effects of radiations of different wavelengths? How do toxic chemicals in the air cause cancer? How does cancer behave, chemically or physically? Answers to these questions seek an understanding of the underlying chemical principles.

Molecules and ionic radicals are composed of a charged nucleus and electrons revolving in orbits. Bonding of molecules occurs when these molecules share their valence electrons. This bonding occurs through either the formation of molecules in which the electrons are equally shared or through molecules in which the electrons are unequally shared. The former type of bonding is called covalent bonding, and the latter type is ionic bonding. Different chemical reactions occur during molecule formation; for example, the detoxification of free radicals in cells during the healing of tissues. The role of chemistry in physical science therefore may be best described as the study of matter and change. Concepts of different branches of chemistry such as biochemistry, chemical kinetics, radiation chemistry, and analytical chemistry are of direct use in the applications of different physical sciences [20, 21, 22].

3.2 Biochemistry Overview

Biochemistry exemplifies a scientific approach focused on the elucidation of biochemical mechanisms underlying normal cellular functions and the pathophysiology of diseases. Prior work noted that biochemical understanding of disease mechanisms was impeded by the difficulty of acquiring appropriate tissue samples. Most knowledge of human metabolic disorders arose from analyses of circulating blood and its constituents. The present study addresses biochemical problems associated with metabolic reactive and inflammatory chronic diseases diagnosed through evaluation of the cell's circulating environment, employing a more dynamic method of investigation.

The erythrocyte, commonly referred to as a red blood cell, circulates continuously throughout the body, enduring a period that is equivalent to its exposure to numerous events occurring in the circulating environment. Throughout its circulatory lifespan, and notably under normal and healthy physiological conditions, the erythrocyte remarkably remains unchanged and steadfastly resists the formation of other types of cells, maintaining its unique structure and function. Therefore, an in-depth analysis of any changes observed in the biochemical composition of the environment surrounding circulating erythrocytes should be producing valuable insights and capable additional information regarding the biochemical mechanisms that are involved in the initiation and subsequent development of various metabolic and inflammatory chronic diseases, such as diabetes mellitus and arteriosclerosis. The study itself is centered on the determination of key factors including erythrocyte fatty acid esters, glucose levels, lactate and pyruvate concentrations, haematocrit values, and the assay of radioactivity in a variety of different disease conditions. Employing a range of analytical techniques, the results obtained from these experiments provide informative details about the putative mechanisms implicated in both the initiation and development of these significant metabolic and inflammatory chronic diseases. This research holds potential for improving our understanding of the underlying biological processes and could pave the way for the development of targeted therapeutic strategies [23, 24, 25, 26].

The approach includes comparisons of free fatty acids during a glucose tolerance test, investigation of interrelationships among carbohydrate, lipid and pyridine nucleotide metabolism in the human erythrocyte both in vivo and in vitro, studies employing inhibitors of glycolysis and the hexose monophosphate shunt, and analyses in primaquine-sensitive cells. The findings have certain clinical implications and highlight biochemical aspects relevant to health and disease ^[27].

3.3 Chemical Reactions in Medicine

Equilibrium and non-equilibrium chemical reactions play a pivotal role in many methods of medical diagnosis and choice of therapy. Multiple forms of energies manifest in biological systems, including mechanical vibration, fluid flow, electromagnetic waves, and heat.

A chemical reaction involves the transformation of certain species (reactants) into different species (products). Many chemical reactions appear to be irreversible: the added acid completely reacts with the added base, neutralising their effect. In life sciences, the principle of pharmaceutical cocktails is well known: if one medicine does not suppress the symptoms, then a combination of medicines might accomplish the task ^[28]. DNA and protein sequences are often used as the ingredients of a biochemical cocktail.

Chemical reactions are studied with respect to reacting species involved, reaction rate, and temperature dependencies of the reaction rate. Synthesis, analysis, and control of chemical reactions constitute the key area of chemical engineering. The corresponding physical chemical properties such as pH, acidity, alkalinity, and chemical potential are of utmost importance in biochemical, biophysical, and biomaterials engineering.

Establishing the basic principles and rules of chemical reactions-rate laws, dependence on temperature and pressure-leads to better understanding of physical phenomena and greater control on chemical reactors.

The metabolism of glucose and fatty acids was meticulously studied with a particular emphasis on the various effects of diabetes mellitus on these processes. Blood and haemoglobin specimens were systematically taken from both patients suffering from the condition and from healthy control subjects. Throughout this investigation, carbohydrate, lipid, pyridine nucleotide, and energy-yielding metabolisms were thoroughly considered, and innovative methods were developed for the precise estimation of the major compounds involved in these metabolic pathways. The application of these newly developed methods led to significant and insightful results concerning these intricate aspects of metabolism in individuals with diabetes mellitus as well as in normal, healthy individuals. Notably, esterification of the fatty acids took place during the incubation period in the presence of radioactive palmitate, and radioscanning of the fractionated lipids provided valuable insights. It was revealed that the degree of this esterification, along with the distribution of the labelled fatty acid, varied significantly between control subjects and diabetics of varying severity, highlighting the complexity and the importance of understanding these metabolic processes in the context of diabetes [29, 30, 31, 32]

Chapter - 4

Mathematics in Physical Science

Medical diagnosis and therapy usually involve dealing with patients or detailed experiments involving patients, and therefore involve very large data sets that are not easy to handle, interpret, or explain. The use of statistics is, therefore, inevitable or unavoidable in all cases. Data can be analysed and manipulated in many different ways, and the best possible way in a particular case is chosen, depending on the nature of the data itself, the purpose of the analysis, and relevance to the questions to be addressed. During data reduction and analysis, it is also worthwhile to examine the raw data in detail. This can include clarifying and removing outlying and inconsistent results, and also deleting irrelevant data. Even then, the final outcome will have certain limitations, and these should be understood and clearly pointed out.

Often, in order to generate or imitate situations similar to those found in real life, various models are created mathematically. These mathematical models serve as valuable tools for understanding and predicting outcomes in numerous scenarios. It is also particularly useful to apply what is known as an 'inverse model' in data analysis, which indicates that the analysis begins with suggestions of specific input/output functions. In this process, the actual data are utilized in the form of constraints or conditions that guide the search process for meaningful insights. Modelling can be employed in a wide range of ways, such as examining the response of the human organism

to particular stimulation. This can include the introduction of a specific agent or substance, as well as facilitating the easy interpretation or comparison of results derived from various 'online' diagnostic and therapeutic techniques. These techniques may include, but are not limited to, ultrasound examinations, radiotherapy applications, and other advanced medical procedures. Some of these models are rather complex and can be quite difficult to handle effectively. They often rely heavily on sophisticated mathematical techniques in order to yield a practical solution that is useful in real-world applications. Thus, all such techniques or modelling procedures are deeply rooted in two main branches of mathematics, namely: differential and integral calculus, along with matrix algebra, which provides the foundational framework necessary for effective modeling. This mathematical underpinning enables researchers and practitioners alike to develop meaningful predictions and analyses that play a vital role in various fields, particularly in the realms of science, engineering, and medicine [33, 34, 35, 36].

4.1 Statistical Methods

The myriad applications of probability theory and statistics in the physical sciences fall into several categories. Statistical methods are used, for example, to describe a population of items produced by a machine. Such an application falls outside the present scope and will not be considered further. The first group encompasses statistical methods used to characterize natural noise sources. These include cosmic noise and ionospheric fluctuations in radio and radar systems, population mutation in human disease, and jitter in heart interruption, to mention but a few examples. Noise is best described in terms of its central moments, following the theory of random processes presented in appendix C. The final category comprises statistical methods used to ease the computational burden in the solution of deterministic problems. Such problems, often involving methods

of interpolation and extrapolation, find application in biological situations when physiological data have been determined only in a limited range of body function or on specific animal species that are associated with human physiology. In support of the Special Relativity Applications to Diagnosis and Therapy section, concepts of the R model, linear regression, and the normal (Gaussian) distribution are considered [37, 38, 22, 39].

4.2 Calculus Applications

In physical science, calculus is applied to various fields. Calculus is responsible for describing the laws of physics relating to electromagnetic, mechanical, thermodynamic and atomic systems. It also represents the behavior of chemical reactions and interactions in chemical systems. This section outlines the basic concepts of mathematical calculus, including a summary of differentiation and integration, followed by a survey of mathematical models of other related topics in physical science, such as exponentially growing/decaying systems, power functions, harmonic functions and statistics.

Physical science introduces fundamental concepts of mathematics that provide a deeper understanding of the physical world around us. These mathematical models significantly contribute to the establishment of various specialized concepts within the realm of physical science, such as probability functions and the field of statistics. A key component of statistics involves drawing inferences from the data that we have at our disposal, which is typically represented in forms like averages, variance, and standard deviation. By applying the principles of physical science, patient data can be rigorously analyzed, leading to significant and impactful conclusions about health outcomes. For instance, models such as exponential growth and decay are employed to investigate patient health data, revealing insights that directly relate to the growth and decay of several crucial

physical parameters. The power function serves as one of the essential mathematical techniques that is briefly explored in the context of physical science. This technique is instrumental in the analysis of data and plays a critical role in the development and evaluation of various diagnostic tools utilized in the field of medicine. Moreover, harmonic functions are recognized as a major aspect of physical science, appearing prominently in numerous diagnostic methods, including electrocardiography, which records the electrical activity of the heart, and electroencephalography, which measures the electrical activity of the brain. The concepts derived from calculus, including differentiation and integration, provide a robust foundation that underpins all other disciplines within mathematics and physical science. These concepts are not only theoretical; they possess extensive practical applications in the physical sciences, particularly those relating to healthcare and medicine. Both differentiation and integration are discussed in some detail in the context of Physical Sciences, highlighting their relevance and the pivotal role they play in various applications that have farreaching implications for diagnosing and treating medical conditions. By understanding and utilizing these mathematical principles, we can foster advancements in the accuracy of data interpretation and enhance our ability to interpretations in real-world medical scenarios [40, 41, 42, 43].

4.3 Modeling and Simulations

Simulations of complex systems-weather patterns, traffic dynamics, galaxy formation phenomena, biological cell interactions-are often articulated as either discrete or continuous mathematical models that seek to represent real-world processes. These sophisticated simulations typically generate thousands of variables, with some being directly observable experimentally and others remaining hidden from direct measurement. Constructing a trustworthy simulation entails a meticulous

process of tightly coupling the intricate physical mathematics to scientific questions, careful experimental the relevant measurements, established engineering conventions, and specific user expectations from the simulations. Accommodating the diverse uses of simulations, the varying levels of user-memory and attention spans, as well as the complex model topologies, translates into a vast and intricate parameter space of potential implementations. To ensure the credibility and reliability of these simulations, four essential ingredients must be present: a clearly defined context of use, robust model development grounded within a well-structured calibration data set (often referred to as training), thorough model testing that is conducted outside of the calibration set (known as validation), and a precise one-to-one connection between the output variables produced by the simulation and the corresponding physical observables measured in experiments. Previous work has critically examined these criteria in the context of biological pathways and various cardiac models, further illuminating the challenges and intricacies involved in creating reliable and useful simulations for complex systems in diverse fields of study [44, 45, 46, 47].

Chapter - 5

Applications in Medical Diagnosis

Medical diagnostics employs advanced techniques that utilize a diverse range of physical parameters for the purpose of identifying abnormalities present within organs and tissues, indicators that may suggest dysfunction at both macroscopic and microscopic levels, thereby enabling the early detection of various diseases and health conditions. Microscopic methods encompass a comprehensive array of sophisticated technologies including magnetic resonance spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, X-ray absorption fine-structure spectroscopy, along with Mössbauer spectroscopy, all of which collectively offer intricate insights into the properties components, cellular structures, physiological states. On the macroscopic side, methods involve imaging techniques such as optical imaging, electron imaging, proton magnetic resonance imaging, and additionally X-ray and ultrasonic imaging, which provide detailed visualizations that reveal the complex arrangements and interrelations among tissues and organs. The integration of various physical techniques in the medical diagnosis process is notably prevalent, especially through the application of advanced image processing methodologies that are employed in the analysis of X-ray imaging, computed tomography (CT) scans, ultrasound imaging, magnetic resonance imaging (MRI), and electrical impedance tomography repositories. Biophysical techniques within the spectrum of medicine are deeply rooted in established principles derived from physical laws coupled with chemistry, facilitating a

comprehensive analysis of fundamental biological processes and phenomena. Reliable information concerning the progression, nature, and biochemical changes associated with various diseases can be accurately gathered, provided that the principles underpinning the diverse range of microscopic methods are meticulously and skillfully applied in practice. Upon validation through established biomedical markers, these novel biophysical techniques, which do not necessitate the utilization of reagents or employ destructive sampling methods, may evolve into standard analytical procedures within routine clinical practice. The process of in vitro verification lends essential credibility and acceptance to these non-invasive medical technologies and biophysical practices within the broader context of health science significant challenges encountered by diagnostics. The biomedical science are centered around understanding the degree to which physical techniques can excel, complement, or provide alternatives to traditional, established diagnostic methods currently in use. A multitude of innovative approaches have been explored and adopted by researchers and clinicians alike to investigate and analyze pertinent issues revolving around these methodologies. The focus of investigations into the efficacy of physical science methods within clinical science has broadened significantly to encompass diverse techniques and their respective applications, allowing for a thorough evaluation of their impact and contributions to the evolving landscape of medical diagnostics.

5.1 Imaging Techniques

The instrumentation and methodologies employed for both diagnosing and treating human diseases are fundamentally anchored in geosciences, utilizing the related principles found therein. Medical geophysics emerges prominently as a burgeoning and innovative domain within the larger field of geosciences, applied directly across various facets of modern

medicine. The breadth and variety of its applications have expanded rapidly, currently addressing numerous diagnostic and therapeutic challenges that arise in clinical environments. Geophysical instrumentation serves as a critical conduit, effectively bridging the gap between established physical theories and their tangible applications in clinical treatment settings. Notably, medical sensor systems, akin to those developed for geological studies, share a wide array of common requirements: extensive applicability across different scenarios, rapid response times, precise calibration protocols, immunity to sensitivities, compatibility with pre-existing instruments, and the capacity for seamless interfacing with computing systems to facilitate efficient data processing and analysis. Furthermore, techniques originally devised for medical purposes have found relevance and utility in the monitoring of a broad spectrum of non-medical processes as well. Accurate derived from electromagnetic interpretations methods. particularly when investigating the configurations subterranean water tables, rely heavily on a comprehensive understanding of the electrical conductivity characteristics present in saturated soils, along with a robust grasp of the principles underpinning electromagnetic induction. methodology involved in inverting electrical conductivity data contributes to a holistic and integrative approach, enabling the precise determination of both the electrical conductivity values as well as the relative dielectric constants that are intrinsic to each soil unit or stratification, whilst also providing essential insights into the dynamic nature of soil-water content interactions.

5.2 Biophysical Methods

The vital power that drives the human body is fundamentally rooted in electric processes rather than purely electronic phenomena. Electric and magnetic fields, whether they are conducted or radiated by our bodies, serve to convey crucial information concerning an individual's health status, well-being, and emotional state. The human brain, through its remarkable and complex functionalities, generates intricate electromagnetic signals that can be accurately detected using strategically placed electrodes on the scalp, allowing for detailed interpretation aimed at effectively monitoring brain activity and neurological function. In this context, the physical sciences play an instrumental role in advancing our comprehensive understanding of physiological processes, as well as in diagnosing and managing a range of disorders, such as melanoma, cancer, and multiple sclerosis. Furthermore, these scientific principles facilitate the development of advanced therapeutic tools which mediate the conversion of external stimuli into electrical signals that the body can effectively interpret and respond to in a coherent manner. Consequently, a cohesive and structured framework of physical science principles can be systematically utilized to enhance our comprehension of complex physiological processes, with the overarching objective of diagnosing and treating various medical conditions with improved precision and efficacy [48, 49, 50]. s(BIA) and related impedance analysis methods-Electrical Impedance Spectroscopy (EIS), Impedance Plethysmography (IPG), Impedance Cardiography (ICG), and Electrical Impedance Tomography (EIT)-applied to biological systems and medical diagnosis. BIA measures the body's opposition to the flow of an alternating electric current, comprising resistance, inductance, and capacitance. EIS, spanning a wider frequency range than BIA, analyzes the flow of electric current and charge movement. IPG records impedance changes related to the pulsatile variation of limb blood volume. ICG assesses impedance changes in the chest linked to cardiac performance and function. EIT provides a spatial distribution of impedance within a two- or three-dimensional domain, conveying extensive information about tissue physiology and pathology [1, 51, 52].

5.3 Laboratory Diagnostics

Laboratory diagnostics serves as a fundamental component in patient management, contributing an estimated 40 to 60% to the overall diagnostic process depending on the specific disease ^[53]. The measurement of analytes in patient samples constitutes the basis for diagnosis, risk assessment, treatment, and follow-up monitoring. Therefore, the generation of high-quality laboratory results is essential, necessitating systematic quality assessment throughout all phases of the diagnostic process. To enhance test reliability and accuracy, diagnostic laboratories have adopted comprehensive quality management systems, supported by guidelines that address the pre-analytical, analytical, and post-analytical stages. Despite these advances, challenges remain in the laboratory medicine sector, particularly in the medical and patient-related dimensions that encompass interpretation of complex disease-related phenomena.

Historically, information technology solutions have primarily focused on managing and optimizing operational data within various types of laboratories. The initial adoption of individual, standalone systems designed specifically for generating and filing test data gradually evolved into more sophisticated, integrated platforms that are now connected with a wide range of analyzers. This evolution has substantially reduced the administrative workload that laboratory personnel face daily, while also minimizing the potential for manual transcription errors that can occur during data entry. In contemporary settings, laboratory information systems (LIS) have emerged as core elements that play a critical role in routine laboratory operations. These systems facilitate not only the organization and management of data but also ensure greater interoperability across multiple clinical specialties and disciplines. As they serve as shared resources for all laboratory professionals, LIS platforms enable a seamless integration of various processes and

significantly improve efficiency, resulting in faster turnaround times for an array of procedures and data streams. This advancement has transformed the landscape of laboratory operations, allowing for improved accuracy and enhanced productivity [54, 55, 56, 57, 58, 59, 60].

Chapter - 6

Therapeutic Applications

Radiation therapy and chemotherapy are the most widely used physical sciences-based therapies for cancer. Radiation therapy uses ionizing radiation to alter the tumour environment by denaturing vital molecules and inhibiting cell division. The mode of damage can be direct as in a high Linear Energy Transfer (LET) α -particles and pions or indirect as in low LET γ -rays and X-rays; the indirect mode involves the radiolysis of water to generate highly reactive species. The bystander effect has also been demonstrated to be involved in these processes. The use of electromagnetic fields in the frequency range 0 Hz to 10 THz to treat diseases ranging from pain relief to cancer is a rapidly evolving area. Closer to the diagnostic end, high-power magnetic fields have been developed to strongly alter the tumour environment and enhance drug uptake. Ultrasound and laser therapies are also becoming standard methods for a number of diseases [11].

Radiation therapies fundamentally rely on the detrimental and harmful effects of ionizing radiation on biological tissue, which is typically delivered externally (teletherapy) but may also be administered internally through methods such as brachytherapy. The primary aim of these therapies is to reduce tumour size significantly and ideally work towards the complete elimination of the cancerous cells present in the body. As a result, radiation therapies may be employed as a standalone treatment or in conjunction with other treatment modalities like chemotherapy

and immunotherapy, depending on the specific circumstances surrounding the patient's condition. When radiation therapy is strategically applied to target tumours, it leads to extensive damage to the DNA molecules that are crucial for cellular replication and division. If this damage is sufficiently extensive and severe, then the tumour cells may become incapable of successfully dividing, thereby leading to the cessation of tumour growth, and in some cases, can even result in noticeable shrinkage of the tumour. However, it is essential to recognize that at the same time, some healthy tissues surrounding the tumour may become unintentionally irradiated during the treatment process, which can lead to various side effects and complications. Therefore, the overall effect of the radiation therapy must be maximized for the tumour while simultaneously being minimized in the surrounding healthy tissues to ensure patient safety and comfort. The severity and nature of the effect largely depend upon the specific type of radiation being utilized during the treatment. The rate of energy deposition in tissue during the process of irradiation is referred to as the Linear Energy Transfer, abbreviated as LET. This LET plays a critical role in determining whether the mode of damage inflicted by the radiation is direct (which generally occurs with high LET radiation) or indirect (which is common for low LET radiation). Direct damage can manifest as either the causing of strand breaks in the DNA molecule itself and/or leading to other alterations to the DNA structure, as well as impacting the enzymes that are responsible for repairing the DNA. In contrast, indirect damage is a result of the production of energetic secondary electrons, which then undergo a complex series of interactions and reactions to create reactive oxygen species (ROS). These ROS subsequently interact with the DNA molecules, further contributing to the overall damage that can be observed in the targeted cells.

6.1 Radiation Therapy

Radiation therapy is a critical medical intervention that utilizes ionizing radiation as a means to effectively treat malignant tumors. Its principal aim is to control or completely eradicate malignant cells to such an extent that they are rendered incapable of further multiplication. Additionally, it serves other significant purposes including alleviating tumor-induced pain and managing infections by targeting and killing bacteria located in the affected area surrounding the tumor. The treatment modalities in radiation therapy can be primarily classified into two main categories: external and internal radiotherapy, each differing in the method by which radiation is delivered to the body. External radiotherapy broadly includes both the delivery of high-energy ionizing photons and also the direct, external application of charged particles to the target site. In this mode of treatment, the source of radiation is positioned outside the patient's body, where beams with various energy levels are precisely directed at the tumor site to minimize damage to surrounding healthy tissues. On the other hand, internal radiotherapy-which encompasses techniques brachytherapy and systemic therapy-involves the strategic placement of the radiation source within the body of the patient themselves. This method of treatment allows for a more localized application of radiation, maximizing the dose received by the tumor while protecting adjacent normal tissues. During internal radiotherapy, the decay of radioactive materials commonly produces both charged particles and ionizing photons, which means that the two forms of radiation can be concurrently present and effective in the treatment process. Importantly, radioactive materials utilized in such treatments may be found in various physical states, including solid, liquid, or gas forms. This diversity allows for tailored approaches depending on the specific type of tumor and its characteristics, further enhancing the effectiveness of radiation therapy in clinical practice [61, 62, 63].

6.2 Ultrasound Therapy

Ultrasound has been used to promote tissue repair, reduce inflammation, and treat pain since the 1940s, and it recently found applications that range from microorganism inactivation to tissue regeneration. Ultrasound is a longitudinal wave of mechanical vibrations above the threshold of human hearing (~20 kHz) that propagates through compressible media, including air, liquid, and solid. Ultrasound waves are generated by the reciprocal conversion of electro-elastic and piezoelectric effects in materials that present a high Q-factor, and irradiation results from the temporal and spatial transfer of energy, momentum, and heat. When propagating through tissue, the wave satisfies the wave equation containing factors such as density, bulk modulus, and random variations due to scattering. The waves decay exponentially with penetration depth because of attenuation, whose principal sources are absorption, reflections, and scattering [64]. Ultrasound produces thermal and mechanical effects on cells and tissues, with mechanical effects inducing phenomena such as cavitation, acoustic radiation force, and stable cavitation [65].

The physiologic response to ultrasound technology relies on an array of contributing factors, including temperature, temperature gradient, the fraction of heated tissue within the target area, duration of exposure, levels of blood flow, as well as intrinsic properties of the tissue found at the site of exposure. Additionally, the response elicited is markedly different among various types of tissues, and importantly, the sensitivity with which each tissue type reacts to fluctuations in temperature can vary significantly. It is also crucial to note that ultrasound parameters are frequently misapplied in clinical settings; for instance, the mechanical index (MI) associated with ultrasound determines the capacity of acoustic pressure waves to induce cavitation. Importantly, the MI serves as a reflection of the

likelihood of cavitation occurring during the application of ultrasound, with values that sit within a range of 0.3 to 0.7 generally deemed to be safe for patient exposure. The overall effectiveness of ultrasound treatment hinges upon whether or not the acoustic pressure successfully penetrates and reaches the intended area of tissue. This process can be quite complex, particularly due to the presence of intricate reflectors situated within the medium being utilized. Therefore, ultrasound exposure is dependent upon a variety of parameters, which include frequency (defined as the number of oscillations or wavelengths occurring per unit of time), the intensity (which measures the amount of power per unit of area), amplitude (used to calculate the extent of displacement), duration of exposure to the ultrasound waves, duty cycle (which is the proportionate measure of time during which the pulse is emitted in a pulsed emission), as well as the pulse repetition frequency (indicating the rapidity with which the cycles of a pulse can repeat). These variables must be taken into serious consideration in order to optimize the usage of ultrasound in therapeutic applications. [66]

6.3 Laser Treatments

Advances in laser technology are continually enabling precise and refined control over an extensive array of various parameters, which prominently include wavelengths, pulse durations, and energy delivery methods among others. This remarkable and ongoing progress allows for a far greater level of specificity and effectiveness in a wide variety of applications. The complex interaction between laser radiation and various target tissues, such as skin or other significant types of biological materials, is significantly influenced by multiple factors. These factors include the absorption spectra of the different components present within the tissues. Additionally, the effectiveness of the laser treatment is deeply affected by crucial elements such as heat conduction and the precise extent of illumination applied during

the entire treatment process. The careful combination of these factors can play a pivotal and decisive role in determining the overall outcome of laser treatments. Moreover, Raman spectroscopy serves as a powerful and sophisticated means to effectively detect specific molecular groups that are present in tumors, various tissues of interest, and other crucial biological samples that hold significant importance in research and clinical settings. This invaluable technique has found extensive applications across various fields, demonstrating its remarkable versatility and paramount importance. Furthermore, the inclusion of advanced spectroscopy techniques, particularly those that are coupled with Raman optical activity, can significantly and meaningfully enhance the analysis of the signals that are collected during these processes. This leads to a more refined and thorough understanding of the molecular compositions and intricate characteristics of the samples under examination, which is absolutely essential for developing targeted therapies and for fostering a deeper comprehension of the underlying biological processes. The implications of these advancements in laser technology and spectroscopy are profound, promising to bring about significant improvements in medical diagnostics and treatment methodologies [67, 68, 69].

Chapter - 7

Case Studies in Diagnosis

When a patient presents with a variety of signs and symptoms, the first crucial medical step is to establish an accurate diagnosis. Transforming the perceptual data gathered during examination into a clinical diagnosis is therefore an essential process. Historically, the development of specialized and sophisticated diagnostic technologies has permitted a significant advance in the field of medical diagnosis. Such remarkable advances, however, often led to a sectorial inspection of the body, which is fundamentally an approach human understanding the inward patient that can at times distort the available information. Evidence-based medicine has described a hierarchy of evidence that ranges from extensive population studies to inferences drawn from clinical experience or acumen during diagnostic activities at the bedside. However, this hierarchy has not proven to be unequivocally superior to the latter method of clinical reasoning. The core logic underlying medical diagnosis must be thoroughly studied as a form of judgment under conditions of uncertainty-a concept that is well known in other fields but often overlooked in the realm of clinical medicine. Such a holistic approach is absolutely essential in order to effectively prevent irrational and unsustainable choices that may arise during diagnosis. Furthermore, a bedside diagnostic method utilizing ultrasound has extraordinary potential. It can significantly expand clinical semiotics and enhance the range of cardiopulmonary signs that are available to pulmonary specialists, ultimately leading to improved patient outcomes and

a more comprehensive understanding of the patient's condition [70]

7.1 Cardiovascular Imaging

Cardiac dysfunction ranks among the most prevalent and challenging cardiovascular issues that healthcare professionals encounter. Diagnostic approaches based on advanced techniques such as echocardiography, magnetic resonance imaging (MRI), chest radiography, and computed tomography (CT) provide essential structural information necessary for detecting various heart defects accurately. While functional information about blood flow has the potential to significantly support diagnosis through different hemodynamic parameters, its full capability and practical applications remain underutilized in clinical settings. The advent of high-speed computational fluid dynamics now enables the establishment of a sophisticated diagnostic platform that quantifies and thoroughly analyzes hemodynamics in a clinical context. This innovative framework integrates stateof-the-art medical imaging with high-fidelity multiphysics computations to reconstruct intricate cardiovascular structures and flow patterns. For instance, this methodology can be effectively applied to the left ventricle and carotid bifurcations, offering in-depth insights. The combination of advanced imaging techniques and comprehensive flow analysis elucidates various mechanisms that lead to dysfunction, such as those found in cardiomyopathy-induced ventricular remodeling and heart failure. Moreover, it supports the determination of optimal surgical procedures tailored to individual patient needs. This detailed approach extends existing medical insight into cardiovascular defects, characteristics of flow behavior, and avenues for successful surgical restoration by merging cuttingedge image diagnostics with sophisticated hemodynamic modeling. Medical radiology has experienced remarkable advancements in image acquisition, data processing, and the implementation of artificial intelligence, all of which contribute to enhancing overall patient management and care standards. Additionally, cardiovascular imaging has emerged as one of the fastest-growing and most dynamic areas in medical practice. Both CT and MR imaging methods have achieved class-I indication status for the majority of cardiovascular diseases, reflecting their importance in clinical settings. Furthermore, such as CT photon-counting techniques, advancements quantitative MRI mapping, and 4-D flow imaging have enriched our capabilities, enabling detailed tissue and functional characterizations that are vital for patient care. Cardiac imaging has proven to be crucial for the accurate diagnosis and effective management of various cardiovascular conditions, which are recognized as the leading cause of mortality worldwide. Over many decades, traditional techniques, including transthoracic echocardiography, stress echocardiography, transoesophageal echocardiography, and nuclear myocardial perfusion imaging, have evolved significantly, enhancing our understanding and diagnosis of these conditions. However, the use of cardiac CT and MRI has seen a marked increase over the last decade, reflecting progressive advancements in technology methodology. The availability of large, comprehensive databases combined with the appointment of dedicated radiologists serve as major resources that drive the development of patient-centered precision medicine, ultimately aiming to tailor interventions to the specific needs of each patient [71, 72].

7.2 Oncological Diagnostics

Cancer remains among the world's top health threats, and early diagnosis is the first step in life-saving treatment [73]. Imaging modalities such as CT, MRI, ultrasound, PET, and optical imaging visualize and characterize functional and molecular processes in tissues noninvasively. In Radiation Oncology, this enables pre-stratification of patients,

microenvironment characterization of the tumor irradiation, and timely evaluation of therapy response to adapt treatment concepts. Non-ionizing techniques supply functional tissue information critical for tailored diagnostic and therapeutic approaches. Conversely, X-ray based methods expose patients to ionising radiation, potentially creating secondary effects and thus constituting a clinical challenge in cancer management. Risk mitigation requires advanced biodosimetry coupled with diagnostic procedures [74] Effective molecular prognostic stratification classification and been revolutionised by mapping genomic and epigenomic molecular alterations in cancer. Molecular cancer diagnostic techniques such as flow cytometry, immunohistochemistry, microarray, next-generation sequencing, and nanomedicine bolster disease detection, in turn underpinning precision medicine. Nonetheless, limited reproducibility, inter-individual variations of molecular signatures, molecular validation challenges, Quality Assurance and Quality Control considerations, and high assay costs affect clinical implementation of molecular molecular worldwide. Patients also undergo either tissue test or imaging studies, or both. Tissue markers such as Prostate Specific Antigen (PSA) are specific, but only applicable for limited cancer sites. Molecular signatures discretely identify profiles of malignant genes. Imaging technologies give information on tumor location and burden at the tissue level but are unable to identify molecular changes during disease initiation and progression.

Morphological imaging methodologies, including plain X-rays, CT scans, and ultrasound, provide critical information about anatomical details, encompassing factors such as the precise location and distribution of tumors within the body. In addition to this, relevant information that is time-dependent-such as the physiological motion of the tissues- is also meticulously recorded and analyzed during the imaging process. Magnetic Resonance

Imaging (MRI) supplies significantly enhanced tumor contrast and offers advanced functional imaging capabilities; however, it is important to note that this technique can be time-consuming and often comes with a higher cost. Positron Emission Tomography (PET) is a scintigraphic technique that employs radioactive labelled tracers-such as ^18F-labelled deoxyglucosethat emit gamma rays, providing valuable insights into metabolic or biochemical processes occurring within the body. Since it directly assesses tumor metabolism at a molecular level, PET is regarded as highly beneficial in the diagnosis of cancer; however, the use of radioisotopes does place limitations on its broader application due to the potential radiation exposure to the patient. The innovative combination of Nuclear Medicine with CT or MRI technology enables a more comprehensive visualization of both anatomical and physiological processes within human tissue, facilitating a deeper understanding of complex medical conditions and aiding in the development of more effective treatment plans [75, 76, 77, 78].

7.3 Neurological Assessments

Sensory perceptual metrics have the potential to provide incredibly valuable insights into the alterations of central sensitization that are characteristic of chronic pain conditions, traumatic brain injuries, and various other neurological disorders. A closer examination reveals that most of these conditions seem to involve a modified central balance that skews the relationship between excitation and inhibition. If these changes can be reliably characterized and understood, they could be exploited to construct innovative clinical tools that would be capable of classifying disorders on an individual basis, taking into account the unique experiences and symptoms of each patient. Accordingly, sophisticated vibrotactile stimulator was a developed specifically for widespread dissemination healthcare settings to facilitate extensive proof-of-concept

studies while also collecting normative data across a variety of different conditions. Such a device represents not just a simple, fast, non-invasive, and cost-effective method for healthcare providers, but also an essential tool for evaluating central nervous system health, monitoring treatment efficacy, and tracking the progress of various neurological conditions over time. In the absence of standardized quantitative measures of the altered central sensitization evident in many patients, employing sensory perceptual metrics with a portable vibrotactile stimulator holds significant potential to improve the accuracy of differential diagnosis and enhance therapeutic assessments across a diverse patient population, ultimately leading to more personalized and effective treatment strategies [79].

Chapter - 8

Case Studies in Therapy

Pain is a subjective experience of potential damage; severe pain can hinder anyone. Medical professionals encounter various painful conditions; conservative treatments sometimes fail, necessitating surgery. Yet some patients are not candidates for surgery due to complications, especially elderly individuals. Severe pain without surgical options severely restricts daily living activities [80].

Three patients suffering persistent pain for 5-10 years illustrate the problem, underscoring the difficulty of recruiting sufficient participants. The severe impact of pain amplifies the gravity of each case; the admission of a single such patient is profoundly meaningful.

The arduous task of navigating multiple medical specializations and facilities-a potential necessity terminally-magnifies the urgency. The ensuing inability to fulfill economic and social roles damages the individual, family, and job, with decreased motivation and productivity as key factors.

Exposure to clinical, living, and environmental stressors such as noise, earthquakes, and interpersonal strain can impact the hypothalamic-pituitary-adrenal axis, disturbing the autonomic nervous system. Both men and women are susceptible; stress alters neurotransmitter function in brainstem regions responsible for homeostasis and pain modulation, profoundly affecting wellbeing.

The therapeutic impact of seeking treatment amid difficulty is invaluable, and trust in the practitioner significantly enhances healing potential. Medical professionals provide not only treatment but also reassurance of future well-being and social confidence.

Information medicine is a form of medical treatment that employs a specially designed device, which is imprinted with a specific intention tailored for the individual recipient. This innovative device has been thoroughly investigated and has shown the capacity to exert a profound influence on living systems-impacting them biologically, cognitively, and physically to a remarkable extent. A substantial body of research provides strong support for its application, demonstrating its potential benefits in a variety of medical contexts.

8.1 Pain management techniques

Although significant progress has indeed been made in the areas of experimental investigation, diagnosis, and treatment of pain, the underlying physiological mechanisms that drive pain remain largely elusive and not fully understood. Gaining a better understanding of pain physiology would not only enhance the quality of treatment options but also improve management strategies for those suffering from pain. Pain can be defined as an unpleasant sensory and emotional experience that is closely associated with actual or potential tissue damage. Chronic pain is characterized by its persistence, lasting more than three months, and it is important to note that it offers no biological benefit, unlike acute pain, which typically serves a crucial protective function for the body. Therefore, the ability to accurately monitor and assess pain levels in diagnostic therapy is of paramount importance. The evaluation of cardiopulmonary function, which is employed in both diagnosis and therapy, constitutes a critical aspect of this monitoring process and is essential for effective treatment. Invasive management strategies aimed at alleviating pain rely heavily on various diagnostic procedures that are designed to distinguish between different types and locations of pain, with new and emerging treatment options being informed and guided by these advanced diagnostic techniques. This comprehensive approach ensures that patients receive the most effective interventions tailored to their specific pain conditions [81, 82, 83]

8.2 Rehabilitation Therapy

Rehabilitation technology holds promise great to significantly assist physiotherapists in providing more effective and tailored patient care across a wide range of conditions. These conditions encompass various categories such as neurological, cardiorespiratory, and musculoskeletal disorders, which are often complex and require specialized attention. The equipment and tools designed for rehabilitation actively support a multitude of clinical tasks including injury prevention, detailed movement analysis, precise exercise execution, and innovative virtual activity simulation. Furthermore, this technology plays a crucial role in the continuous monitoring of patient progress and in the effective coordination of individualized rehabilitation programs. Many of the modern systems available today are designed to enable physiotherapists to intervene with minimal effort, as the equipment is capable of autonomously recording data and producing comprehensive results with great accuracy. Ongoing research that explores the impacts of digital technologies, artificial intelligence, and robotics on the field of rehabilitation remains imperative and of utmost importance, especially as these advanced devices become increasingly capable of operating independently and contributing to improved patient outcomes [84]

Rehabilitation therapy supports individuals who have lost optimal functioning due to illness, surgery, or injury ^[1]. By directing patients toward greater independence, rehabilitation complements, rather than substitutes for, treatment of health

conditions. This approach harnesses multiple therapies to improve, regain, and enhance functional activities.

The prevailing model of rehabilitation incorporates assessment, goal setting, intervention, and evaluation, tracing a path from acute care to home and community reintegration. Historically, therapy has been largely circumstantial, with interventions fitted upon the patient. Modern theories and evidence advocate a more systematic application of selected modalities to the specific functional impairments.

Rehabilitation therapy is a broad industry providing medical treatments and therapies to individuals recovering from injury, illness, or surgery. Rehabilitation professionals assist in improving mobility, regaining independence, and preventing long-term disability. The need for rehabilitation stems from both physical and psychological challenges that can hinder one's capacity to perform daily activities. By addressing these issues, therapy aims to restore overall quality of life and enhance patients' return to work and social participation. Rehabilitation includes physical, occupational, psychological, and speech therapies, employing a multidisciplinary approach involving various healthcare practitioners and family support systems. Advancement in rehabilitation now incorporates assistive technologies such as wheelchairs, prosthetics, virtual reality and tele-rehabilitation platforms, promoting integration within community and workplace settings. This comprehensive sector continues to grow, responding to societal aging, chronic disease prevalence, and complex trauma from accidents and warfare.

Rehabilitation services have been informed by a series of evolving perspectives. The literature on influences and ideas underpinning rehabilitation emphasizes the complexity and range of services needed to address the diverse challenges faced by individuals with disabilities and chronic health problems.

Rehabilitation has distinct histories for different types of impairments but has become increasingly integrated through the realization that the core principles and purposes are common to everything from cerebral palsy to spinal cord injury and stroke, and from acquired brain injury to visual impairment and depression. An impelling feature of post-World War II rehabilitation was the special concern for balance and movement through the PhD work of Snell in Switzerland and Ajuriaguerra in France. A key figure during the Second World War was Ashby, who, working at the Second Southern General Hospital, Edinburgh, developed ideas of total care, showing how a full programme of restoration could be put in place for any serious physical or mental disability [2].

Rehabilitation therapy is a multifaceted process designed to facilitate recovery and adaptation following illness, injury, or disability. It encompasses various types of therapy, each tailored to address specific deficits and patient needs. Primary categories include physical therapy, occupational therapy, speech and language therapy, and psychological therapy. Each discipline focuses on restoring or compensating for impairments to improve overall function and quality of life. An understanding of these distinct forms of rehabilitation therapy sets the foundation for exploring the comprehensive rehabilitation process underpinning effective patient care.

Physical rehabilitation therapy concentrates on facilitating recovery from severe injuries or medical conditions to restore optimal movement and function. It supports individuals affected by musculoskeletal, neurological, or other physical disorders, guiding them through staged interventions aimed at retraining motor control from basic postural stability to complex locomotion in varied environments [3]. All techniques begin with components practiced in supportive settings prior to integration into daily life. Physical therapists apply remedial exercises and

equipment in efforts to enhance endurance, coordination, and strength, thereby regaining optimal movement and function. Geriatric rehabilitation specialists address functional status in frail elderly persons following acute events or functional hazards, providing comprehensive management for falls prevention, postoperative recovery, arthritis. dementia. musculoskeletal problems, and chronic obstructive pulmonary disease. Quality of life improvements derive from patient evaluation, education, and emotional support extended to both patients and families, alongside encouragement of healthy lifestyles [4]. A multidisciplinary approach collaborates to formulate individualized programmes tailored to each patient's Specialists such as geriatric physicians conduct multidimensional assessments to identify prognostic factors, enable targeted interventions, and facilitate outcome prediction.

Systematic informs measurement the selection, administration, and monitoring of interventions to address patient-specific problems and progress. A plethora of technologies serve to assist interventions, incorporate biofeedback modalities, and maintain rigorous data collection throughout the rehabilitation journey. Such clinical pathways become vital during periods of prolonged care, spanning from acute events to regain independent functioning or support patients bereft of residual autonomy. In essence, physical rehabilitation aims to empower individuals, enabling them to overcome obstacles and construct the life they envisage [5].

Occupational rehabilitation aids patients in acquiring, recovering, or maintaining skills needed to perform work within their capacity, facilitating a return to employment and independence in everyday tasks. Clinicians collaborating across professional fields foster the necessary economic, social, and health-related conditions for return to work and participation in working life.

The goal of occupational rehabilitation is to assist sick-listed individuals in working full time or resuming any working activity. The steepest increase in sick leave occurs abruptly at the beginning of the first sick-leave period and immediately before a holiday, suggesting that short breaks in work serve as a reminder that may promote further sick-leave. Occupational rehabilitation reflects the complexity of human activity and the close interactions required between different competence areas at the individual, organizational, and societal levels. Combining biopsychosocial understanding with approaches that emphasize motivation, meaning, and activity is advantageous when examining both obstacles and possibilities for return to work.

The rehabilitation process generally starts with an initial evaluation to determine the patient's core problems, followed by case and goal planning to set rehabilitation targets, and a treatment/rehabilitation phase to implement solutions and strategies and to build the patient's capabilities. After completing the initial treatment/rehabilitation, progress is monitored through periodic observations and evaluations to provide continuous feedback and tailor plans to the patient's evolving needs. Rehabilitation interventions and measures are designed with respect to the specific type of rehabilitation applied and the patient's requirements. Numerous scientific publications, clinical guidelines, and expert reviews provide clear recommendations for evidence-based rehabilitation strategies. The multiple chronic health conditions that often accompany long-term rehabilitation necessitate a model of guidelines and interventions that embraces interdisciplinary collaboration patient-centeredness, and ensuring consistency with the broad principles and core components of evidence-based practice. Knowledge of evidencebased scientific insights is an essential basis for effective multidisciplinary teamwork. Mastery of this knowledge enables rehabilitation professionals to holistically appreciate the legislative and service frameworks surrounding occupational rehabilitation [6, 7].

Communication is a fundamental human function, and speech and language disorders affect more patients than many other prevalent conditions combined [8]. These disorders result from a broad spectrum of causes, including stroke, neurological diseases, trauma, developmental disorders, surgery, infections, and autoimmune diseases.

Speech and language rehabilitation addresses a variety of treatable conditions, including aphasia (impairment in language formulation and comprehension), dysarthria (speech production), apraxia of speech (motor speech programming), and cognitivecommunication disorders (impairments in communication related to attention, memory, problem-solving, and executive functioning). Treatment involves one or a combination of approaches, such as facilitation, direction, or stimulation, supported by a variety of specific techniques tailored to the individual's needs. The goal is to help patients recover lost skills or learn alternative ways of communication. Speech and language rehabilitation focuses on improving affected abilities and compensating for persistent deficits that are unlikely to resolve. This can involve learning strategies to work around remaining problems, developing alternative communication modalities, or training communication partners to better understand the patient. Programming exercises leveraging provide technology can additional, computer rehabilitation opportunities to complement therapist-led sessions.

Psychological rehabilitation supports people with emotional or mental illness to foster self-determination, recovery, and community participation ^[9]. Its principles are often applied after brain injuries, strokes, or other neurological illness. Rehabilitation frequently involves multi-disciplinary teams of

clinical neuropsychologists, neurologists, physiotherapists, occupational therapists, speech-language therapists, nurses, and physicians.

Psychological therapy after brain injury addresses common and disabling conditions such as depression, apathy, pathological grief, and associated difficulties in communication and reasoning. Depression affects both recovery and psychosocial outcomes in the months following a stroke. While mood symptoms tend to dissipate over the course of the next year, symptoms that persist beyond twelve months are especially predictive of ongoing depression. Equally important to well-being in the months after a stroke is the maintenance of previous group membership and social identity; these factors exhibit a stronger association with positive outcomes than the majority of physical or cognitive health markers.

Psychotherapy with brain injury survivors faces particular challenges because services and techniques must often be varied from traditional practice. Nurses have a unique role that is pivotal to ongoing standard stroke rehabilitation. Together with the management of depression in elderly stroke patients, such considerations inform the development of modified therapeutic practices and coherent principles of psychotherapy for brain injury.

Within psychological rehabilitation, restoration and compensation serve as principal approaches, especially concerning memory functions [10]. The restoration approach may utilize internal memory aids as alternatives to drill and practice. Different strategies-restorative, specific knowledge acquisition, compensatory, and holistic-demand distinct training and materials, yielding varied outcomes. For supporting daily functioning, training with external memory aids is generally preferable, whereas the re-learning of words benefits from

knowledge acquisition techniques. The holistic approach potentially facilitates superior integration in community settings and enhances social participation; thereby, aligning rehabilitation goals with the selected memory intervention approach is crucial.

Rehabilitation is a process aimed at enabling individuals with disabilities, illnesses, or injuries to reach their optimal physical, psychological, and social functioning potential. The process begins with an admission assessment and identification of rehabilitative goals; this evaluation guides treatment interventions that encompass medical, surgical, social, educational, and vocational components, delivering targeted therapy to maximize an individual's potential.

After treatment commencement, progress is continually evaluated to determine the effectiveness of interventions, thereby informing adjustments to the rehabilitative plan. Tailoring the rehabilitation programme to a patient's specific goals, abilities, and overall situation remains a critical determinant of successful outcomes [11].

Rehabilitation therapy encompasses a wide range of noninvasive therapeutic techniques and methods aimed at alleviating or healing physical impairments, cognitive deficits, and mental health disorders. Its goal is to restore the highest possible level of independence and function to individuals affected by physical injury, surgery, mental illness, or developmental disability. It is a long-term process that requires an integrated approach involving medical and allied healthcare professions, the patient's family, social workers, counselors, and others. This interdisciplinary collaboration is key to a rehabilitation program. Sources indicate that a correct evaluation of bodily functions-which considers an individual's capacity to perform activities for self-care and social interaction-is a crucial part of the rehabilitation process. Such assessments form the

foundation for designing effective interventions and measuring outcomes; their accuracy directly influences resource allocation and the attainment of personalized goals ^[5].

Goal setting is a pivotal component of rehabilitation therapy, directly influencing patient engagement and outcomes. In motor stroke rehabilitation, an emphasis on participation highlights patient-chosen goals, therapeutic plans, and assessment of progress. Capturing this dynamic within everyday clinical practice necessitates reliable measurement tools that not only quantify rehabilitation achievements but also document the goalsetting practices themselves. This documentation enables healthcare professionals and institutions to bridge the gap between evidence-based rehabilitation research and routine clinical care, facilitating the translation of research findings into practice. Patients facing amputation encounter multifaceted including significant declines challenges, underpinning the importance of clearly identified outcome goals that guide the rehabilitative process. Sharing such goals among patients, their families, and clinicians improves the likelihood of fulfilling these objectives, which are often termed priorities or rehabilitation goals. Cutting-edge rehabilitation modalities, such as Functional Electrical Stimulation, have demonstrated the capacity to meet these patient-reported objectives. A set of formal models and frameworks supports collaborative goalsetting efforts. These include the Goal setting and Action Planning record, which tracks patients' personal goals, plans, and appraisals; the Person Environment Profile, which examines how personal attributes-such as personality, health and fitness, motivation, problem-solving ability, and attitude-and environmental factors influence goal attainment; the Self-Management Goal Cycle framework, designed to enhance selfmanagement skills in chronic conditions like diabetes; Goal Management training, encompassing the stages of orienting, goal

selection, sub-goal partitioning, encoding and retention, and monitoring; and the FOURC model, which guides client-clinician teams through selecting meaningful communication goals and developing collaborative plans. Collectively, these tools and frameworks provide a structured approach to establishing rehabilitation goals that are meaningful to individuals and conducive to successful outcomes [12].

The definition of the intervention is based on the general rehabilitation strategy, the original rehabilitation plan, the rehabilitation progress, and the existing problems during the treatment process. It also involves consideration of health economics.

The intervention strategy is systematically outlined by the 'user-intervention-medical items' framework and is implemented using a progressive dynamic method.

Evaluation constitutes a pivotal element of the rehabilitation process, with progress assessment encompassing a range of qualitative and quantitative measures. The importance of evaluation has led to a dedicated field of study within rehabilitation research, which has sought to determine effective procedure selection, identify common causes of success and failure, and establish appropriate timing and criteria for progress measurement [13]. Quantitative scales and technological sensors hold considerable promise toward a more comprehensive assessment of health conditions in rehabilitation [5]. The information collected during evaluation informs subsequent interventions.

Research in rehabilitation therapy follows the International Classification of Functioning, Disability and Health (ICF). Although clinicians attempt to integrate components and adapt sessions, research remains distant from personalized or precision rehabilitation. Recent statistical methods (e.g., the RTSS)

framework) analyse intervention components individually to beneficiaries identify assess effects and physiotherapists regard evidence-based practice (EBP) as useful, yet a gap exists between perceived and actual knowledge. Integrating EBP components could increase clinician support and application, underscoring the need for educational emphasis. A pilot investigation involving 11 rehabilitation therapists in a skilled nursing facility employed a structured 6-week educational programme based on literature-informed EBP sessions to address therapists' confidence. Results from the Evidence-Based Practice Profile Questionnaire revealed that 7 practitioners experienced elevated confidence levels [15].

Rehabilitation therapy aims to restore skills and function following debilitating injury or medical procedures. Common applications address patients recovering from brain injury and other neurological impairments ^[1].

The past century has witnessed notable advances in the understanding of brain function and plasticity, stimulating new approaches to rehabilitation therapy. Diverse treatment modalities complement the traditional role of physical therapists, including the work of occupational therapists to improve everyday skills and speech and language pathologists to enhance communication abilities. Psychological therapy assists patients in coping with the broad consequences of disability. Practitioners use patient assessment and impairment evaluation to define goals. The rehabilitative process usually follows an initial stage of consultation, assessment, and goal-setting, followed by specific intervention and continued evaluation to monitor improvement.

Healthcare professionals often seek evidence-based clinical practice guidelines to guide rehabilitation interventions for patients with functional disabilities. Many of these guidelines concern musculoskeletal and neurological impairments. Systematic reviews consistently highlight the absence of guidance for optimal rehabilitation following various non-progressive neurological conditions, despite the high prevalence of these cases in clinical practice. The existing guidelines place variable emphasis on multidisciplinary approaches, with the most comprehensive documents promoting collaborative strategies for all rehabilitation phases [16].

Rehabilitation therapy revolves around the diagnosis and management of physical impairments, disabilities, and handicaps through tailored physical or mental interventions ^[17]. Its multidisciplinary features dictate a close link with diverse disciplines and professionals, notably physical, occupational, speech, and language therapies, as well as psychology.

A growing list of outcome measures constitutes the focus of research in rehabilitation therapy to advance clinical practices. The field of cancer rehabilitation exemplifies this approach, aiming to alleviate physical, social, psychological, cognitive, and emotional burdens to improve patients' quality of life. Tracking outcomes under a defined rehabilitation therapy program assesses the effectiveness of interventions and guides the development of evidence-based treatments. Outcome measuresoften in the form of questionnaires-reflect the influence of healthcare interventions on health status by simultaneously assessing baseline function and reporting progress, thereby acting as a vital tool to determine treatment response. Understanding the validity and utility of these outcome measures helps healthcare providers decide when and how to use specific treatments, ensuring consistent quality of care. Commonly applied outcome measures address aspects such as function, quality of life, pain, fatigue, and cognition, offering a starting point for evaluating rehabilitation interventions.

Despite their recognized importance, the implementation of outcome measures frequently remains limited, resulting in a paucity of generated data. Conventional challenges include inconsistent use and insufficient data variability. Successful implementation calls for enhanced staff compliance and dedicated processes [18]. The adoption of established frameworks, such as the WeeFIM system, supports accreditation (e.g., from CARF), thereby increasing program marketability competitiveness and providing validation for the effectiveness of rehabilitation services. Additionally, the selection of outcome measures must correspond to the priorities of relevant stakeholders, including patients, carers, and clinicians. Poststroke arm rehabilitation illustrates the need for measures that capture outcomes deemed important by these groups. Deliberate procedures-such as systematic identification of existing measures, focus groups employing nominal group techniques, and supplementary interviews-facilitate the alignment of measures with stakeholder-identified outcomes [19].

Multidisciplinary teamwork remains a fundamental requirement in stroke rehabilitation and for individuals with other conditions that affect effective communication [20]. For patients who have experienced brain injury, the collaborative network potentially encompasses a wide range of professionals, including speech-language therapists (SLTs), physiotherapists, occupational therapists, nurses, medical experts, social workers, psychologists, and others. Various research findings confirm the necessity of maintaining a broad interdisciplinary team, in which the involvement of family members is recognized as integral to the collaborative partnership. SLTs thereby highlight the importance of drawing on the International Classification of Functioning (ICF) framework whilst also identifying family members as key collaborators, recommendations that extend beyond stroke rehabilitation to aphasia overall. Whereas some

specialist practitioners concentrate primarily on linguistic impairments, current guidelines emphasize a more substantial role for additional allied health professionals and volunteers in the treatment of chronic aphasia. Psychologists might address the emotional impact of aphasia and contribute to planning related to return-to-work programmes, whereas general practitioners are well placed to offer prognostic information. collaboration and communication among team-members facilitate person-centred assessment, shared goal-setting and the identification of solutions to practical problems; in particular, the consistent involvement of nurses who provide assistance with everyday assessment and ongoing follow-up underscores the extent to which rehabilitation is a collective responsibility.

Rehabilitation therapy serves as a critical method within healthcare for assisting and supporting individuals toward recovery after illness, injury, or surgery. It aims to help individuals adapt, manage, and regain independence and functionality, thereby improving their overall quality of life and well-being. Such support can be delivered by a diverse and extensive group of healthcare professionals including physicians, occupational therapists, physical therapists, rehabilitation nurses, exercise therapists, and art therapists amongst others. According to [21], goal-oriented rehabilitation enhances interdisciplinary collaboration as professionals align their efforts toward the patient's self-identified objectives. Empowering patients to define their own goals fosters a collaborative environment and mitigates potential conflicts within the team. The involvement of multiple, diverse professionals operating independently from home care services further strengthens collaborative efforts. Organizational aspects, such as the formal affiliation of teams to home care services, play a crucial role in facilitating this collaboration. Close collaboration characterized by effective communication, disciplinary diversity, and shared planning and

decision-making not only fosters a positive team atmosphere but also enhances learning and satisfaction. Addressing the psychosocial dimensions of participants' needs requires a broader rehabilitative approach that extends beyond mere physical functionality. Interdisciplinary and transdisciplinary collaborations are deemed most effective; however, they necessitate substantial adjustments in professional roles and demand well-developed social competencies. Team members generally perceive such collaborative engagements positively, viewing them as both motivating and enjoyable. Optimal collaboration hinges on professionals possessing a clear awareness of their roles, competencies, and a proactive willingness to undertake a wider array of responsibilities. The relationship between various organizational models and their influence on interdisciplinary collaboration remains an area ripe for further investigation.

Family has a pivotal role when the patient needs rehabilitation interventions. The rehabilitation process in children with a cochlear implant is implemented with the help of the family and the presence and cooperation of family members is essential in the rehabilitation of the child [22]. The family is a complex and diverse unit that needs to be clearly understood and defined by rehabilitation practitioners in order to provide more inclusive care. Parents often provide insight on goals and are usually responsible for implementing home programs between therapy. They have the right to access therapeutic information about the person receiving services. Tasks such as providing consent, setting goals, sharing information, and implementing home programs are frequently handled by the attendant adult. In single-parent or co-parenting families, this can place some heightened demands on parents and caregivers and should be considered when offering family-centered rehabilitation services. Creating inclusive clinical environments involves asking openended questions about the family structure rather than making assumptions about its members, and sharing pronouns and using gender-inclusive language when communicating. Accommodating diverse communication preferences also contributes to greater inclusion ^[23]. Health care professionals rely on further assistance from other professionals involved with a patient during rehabilitation, according to the multidisciplinary approach.

Technology is a tool that holds the potential to transform rehabilitation therapy. It has furthered the traditional goals of therapy, enhancing or facilitating patient autonomy and independence in everyday activities and societal participation. Advances accelerated by developments in in-home and mobile technology have created new opportunities for extending rehabilitation therapy into the home and community where it is most needed and effective, and increasing the intensity of practice and motivation ^[8].

Assistive devices and technology have long been introduced into therapy, and more recently have been developed specifically to aid rehabilitation. Many technological approaches, such as body-weight-supported gait training, functional electrical stimulation, and hand-held robotics, have been applied to the treatment of neurological conditions. These therapies typically use elements of motor learning combined with the physical assistance needed to perform tasks that might otherwise be impossible, when unassisted, provide a large number of repetitions during functional movements, and provide accurate and valid feedback of performance [24].

Tele-rehabilitation is also becoming an increasingly popular option, and many patients currently attend therapy via videoconferencing services such as Zoom and Skype. The ongoing development and whole-scale clinical introduction of

novel rehabilitation technologies have led to a growing appreciation that the gap between the technology and the clinical world must be bridged to maximize benefits ^[25]. Virtual reality has emerged as a tool for rehabilitation (such as of the upper limb), and receives wide attention. It is frequently described as a tool to incorporate motor control and motor learning principles and is being used in many clinics globally with many different patient groups and populations.

Assistive devices serve as an important adjunct to traditional rehabilitation therapies. They enhance functional capabilities and promote greater patient autonomy. Advances in technology have provided numerous options that address a wide range of impairments.

Devices encompass myriad products that assist patients in daily activities. Examples include wheelchairs, prosthetics, communication aids, home modifications, and computer access tools. These solutions improve safety and reduce dependence on caregivers. They also help patients participate more fully in home and community life.

Occupational therapists rely heavily on assistive devices to support their interventions. The evaluation and selection process takes into account individual needs, environment, and anticipated goals. Successful outcomes hinge on proper assessment, fabrication, fitting, training, and ongoing maintenance. Ethical considerations arise due to the impact on independence and quality of life.

Assistive devices also play a role in self-management strategies following neurological injury. Despite evidence supporting their effectiveness, uptake remains limited. Barriers include limited availability, lack of training, financial constraints, and inadequate policy frameworks. Healthcare professionals and families therefore require additional education to better facilitate access and sustained use [26, 27].

Tele-rehabilitation refers to the delivery of rehabilitation services at a distance via the use of communication technologies and information computers. The field first came into the limelight in 1999. During the Vietnam War, the Department of Defense used telerehabilitation equipment to provide care to wounded soldiers from a distance. In 2002, a group of government officials, engineers, and clinicians discussed the potential of using telecommunication systems to deliver rehabilitation therapy and to assess patients remotely. The first known Internet software for telerehabilitation was developed in 2001 for delivering cognitive rehabilitation therapy. Adoption and demonstration of safety and efficacy took more than a decade of research and pilot programs. Addressing administrative, organizational, clinical safety, efficacy, and cost 6benefit issues is critical to developing and implementing telerehabilitation programs. A multidisciplinary approach that streamlines administrative policies, clinical procedures, communication protocols, infection control strategies, and safety standards for remote service delivery is essential.

Tele-rehabilitation modalities include videotelephony, virtual reality, web-based approaches, sensor monitoring, wireless technology, mobile applications, interactive virtual therapy, virtual reality balance training, and robotics. For example, videoconferencing is effective for patients with knee osteoarthritis and chronic obstructive pulmonary disease. Virtual reality provides immersive environments that enhance feedback, with virtual reality balance training improving balance and posture in stroke patients and interactive virtual therapy benefiting post-total knee arthroplasty rehabilitation. Web-based programs like adaptive cognitive remediation help improve cognitive function in neurological conditions such as multiple sclerosis [28].

The process of learning or relearning skills, known as rehabilitation therapy, is facilitated by specialized environments and methods. Virtual reality (VR) presents a compelling solution that surmounts the constraints of conventional rehabilitation practices ^[29]. By enabling users to operate within a simulated three-dimensional setting, VR fosters engagement with activities that are otherwise difficult to execute. These activities can be tailored to individual requirements and conducted repeatedly until the objectives are fulfilled ^[30].

Rehabilitation therapy encompasses processes designed to individual's functional capacity; minimize optimize an impairments in body structure and function, activity limitations, and participation restrictions; and prevent or reduce the loss of function from acute or chronic conditions in adults and children [31]. Challenges in rehabilitation service delivery include limited access to and scarcity of services [11]. Geographic location, economic circumstances, culture-specific expectations, and disability often limit rehabilitation uptake and adherence [1]. A partial understanding of the role, goals, and approaches of rehabilitation professionals-an observation recorded in an Inuit sociocultural context-is common among clients and among health care providers who interact with rehabilitation services. The specific roles of rehabilitation professionals and approaches such as mandatory exercise programs and functional activities are not always fully understood and accepted, thereby negatively impacting client investment in therapy and interprofessional collaboration and adversely affecting the quality of services delivered. Rehabilitation for geriatric patients can be notably complex. Patients and informal caregivers observe a lack of attention to prevalent neuropsychiatric symptoms such as altered stimulus processing, emotional management, memory loss, and diminished initiative, and they often do not receive repeated or varied forms of information about these symptoms or

their treatment. To accommodate what patients and caregivers identify as their needs, rehabilitation should be tailored to their specific situations, with shared decision making in goal setting that respects preferences, values, and autonomy. Other rehabilitants are not always aware that therapy comprises a range of activities beyond physical therapy and that group training raises therapy intensity; those experienced with such training consider it effective.

Informal caregivers should be trained and integrated into therapies to increase overall therapy time, enhance knowledge of stroke-related problems, and enable handling techniques tailored to individual patients. Rehabilitation teams have moved from intradisciplinary to interdisciplinary or transdisciplinary models, with increased emphasis on communication and shared goals. Patients and caregivers ought to participate as full team members, as patients often have the clearest insight into their postrehabilitation needs. Task-oriented training, which benefits functional outcomes, should also involve nursing staff to facilitate additional opportunities outside of regular therapy sessions. An enriched environment incorporating communal areas, equipment, and social stimulation appears effective, though the optimal combination and dosage of enrichment components remain undetermined; thus, further research is necessary to identify the most conducive elements for promoting brain plasticity.

Rehabilitation therapists employ interventions that enable patients to achieve and maintain optimal physical, sensory, intellectual, psychological, and social functional levels following injury, disease, or lifestyle changes. Nevertheless, multiple obstacles impede ostensible access to or completion of rehabilitation therapy, including prognostic modifiers, socioeconomic disparities, post-acute care placement, patient compliance, poor transitions, and discharge against medical

advice [32]. Although obstacles are often chronicled and analysed by individual discipline, a comprehensive multi-disciplinary review raises awareness and fosters cross-discipline collaboration to overcome nationally significant barriers. Triangulation of barriers findings from both discontinued and ongoing rehabilitation therapy patient accounts can facilitate the development, implementation, and assessment of improved accessible care [33].

Health care professionals identify culture as a dimension that can influence health. Cultural competence, even in the earliest periods of health care can be traced to a practice standard defined as a set of congruent behaviours, attitudes, and policies that come together in a system, agency, or among professionals and enable that system, agency, or those professionals to work effectively in cross-cultural situations. Addressing multicultural issues in rehabilitation service delivery in a cross-cultural context poses challenges at the individual, organizational and system levels. Cultural competence appears as a way to cope with them in order to improve access to services, quality of care, and thus health outcomes [31]. Culture itself is a multidimensional and complex phenomenon. An understanding of culture includes the knowledge that culture underlies many health care expectations and that culturally responsive care is sensitive to the needs of all people and respects the individual's cultural heritage [34]. Since the early 1990s, cultural competence techniques began to be considered an important part of health care and then of rehabilitation practice and training.

Financing rehabilitation services is a key challenge that affects access and quality. Many services are underfunded or don't receive any funding at all ^[35]. Throughout much of the 20th century, rehabilitation was largely centered on physical medicine and related fields. Social services and social insurance systems then evolved and extended rehabilitation in a multiprofessional

context. A co-financing model engaging multiple professions facilitated interdisciplinary collaboration and enabled patients to meet with a multiprofessional team in a single health center setting. No studies of free or subsidized rehabilitation for the poor were identified, but a study in Bangladesh reported that most spinal cord injury patients requested interest-free loans and vocational training as part of their financial coping strategies. The human cost of rehabilitation represents approximately 60% of total expenditures, but cost control is complicated by rapid staff salary inflation and the absence of financial incentives in most low- and middle-income countries (LMICs). Financial and motivational policies are therefore needed to attract and retain human resources, yet regulatory barriers can further hinder service expansion. LMICs should also pursue alternative training mechanisms and increase education and training grants in order to expand the rehabilitation workforce. Despite these pressing needs, literature regarding financing models for rehabilitation remains sparse.

The field of rehabilitation therapy continues to evolve rapidly, with innovations in neuroprosthetics, brain-computer interfaces, multi-electrode "brain-machine" interfaces, 3-D computer vision tracking, wearable sensors, smart clothing, virtual reality, robotics, and gaming systems. These advances create new clinical possibilities but also generate questions about clinical utility and highlight the need for rigorous trials to substantiate their effectiveness [25]. Developing scalable devices and systems to promote recovery as patients transition from clinical to community settings presents a significant challenge, with implications for cost and efficiency across healthcare levels from intensive care to long-term rehabilitation [1]. Professional organizations have recommended policies to promote patientto novel rehabilitation technologies, access underscoring the importance of translation and dissemination networks to bridge emerging technologies and clinical practice. Future advances in rehabilitation training and opportunities will further mitigate the complex and costly sequelae of injury or disease.

Innovative practices in rehabilitation offer new techniques, technologies, and models to enhance treatment effectiveness and patient experience. These approaches address challenges including limited access, resource shortages, and complex patient needs. The rich diversity of patient profiles, from pediatric to geriatric, necessitates continuous expansion of rehabilitation knowledge and methods [36]. Technology facilitates the development of interactive and adaptable platforms that engage patients and support targeted interventions. Efforts to reduce therapy duration and boost efficiency align with societal demands, developing more efficient models that provide appealing alternatives to traditional services. Multidimensional exploration encompassing healthcare policies and device development fosters a broader understanding of the rehabilitation system.

Rehabilitation therapy is a cornerstone of healthcare systems worldwide and is a primary rehabilitation intervention to optimize well-being and functioning for patients with diverse physical and cognitive impairments. Providing the most cost-effective and efficient rehabilitation therapy continues to present challenges that necessitate new approaches and delivery models to promote access to essential rehabilitation interventions for all populations [37].

During the past three decades, considerable differences have been observed across the globe in the leadership, management, and governance of rehabilitation services. In response, various countries have commissioned comprehensive policy analyses to guide the effective stewardship, planning, and monitoring of these services ^[38]. The objective of the policy analysis presented here is to evaluate the four principal components of rehabilitation policy24namely, (1) governance and leadership, (2) financing, (3) human resources, and (4) information systems24within the context of policy, legal, and operational frameworks to identify areas of emphatic attention for developing a sustainable policy framework compatible with rehabilitation requirements.

Rehabilitation policies are crucial for ensuring universal access to rehabilitation services in an equitable manner. The absence of an explicit policy often leads to fragmented, inequitable, and inefficient service delivery. Moreover, without a committed policy, establishing regulatory frameworks proves difficult, and the lack of definitive guidance undermines service quality. The situation is further complicated by ineffective intersectoral collaboration, a scarcity of up-to-date and reliable data, and inefficient use of existing resources. Therefore, the development of a robust rehabilitation policy framework is indispensable to ameliorate these challenges and guide policy options based on internationally accepted environmental factors.

The design of therapeutic interventions is central to rehabilitation training and can be addressed through a graduate or equivalent programme, often combined with clinical experience.

Several strategies have been used to reduce the gap between research and practice ^[39]. Locally produced training materials, based on a thorough appraisal of the research evidence, have been developed in some countries. Other training approaches emphasise knowledge translation. In addition, ongoing training and supervision are often considered vital.

Training materials have been made available in South Africa, Namibia, Tanzania, Zimbabwe and Malawi, amongst other countries. These materials emphasise the knowledge, attitudes and skills that rehabilitation workers need to carry out the actions outlined below and fulfil the relevant tasks. Online courses of a similar kind are also available.

Real-world application of therapy programs illustrates both successes and lessons for rehabilitation. Two examples highlight the social aspects of physical rehabilitation, notably socialization and peer support [2]. The first relates to a rights-based approach to rehabilitation, established with advisory guidance from disabled persons. The second draws on fieldwork comprising interviews with patients, family members, healthcare professionals, and academic experts. Participant observation with families visiting patients involved extended engagement between September 2016 and February 2017. Both studies underscore rehabilitation as a tool for inclusion and an equal life, demonstrating the importance and meaning of health-related intervention as a social process in disabled people's lives. Limitations include a focus on the role of family in inpatient care in the UK.

Rehabilitation therapy has been proven effective for various conditions. After weeks of therapy, many individuals achieve improved health and quality of life.

A young man with intellectual disabilities underwent a tailored physiotherapeutic regime including treadmill exercises, resistance training, and task-specific practice. Outcome measures indicated significant improvements in mobility, strength, gait, balance, and performance of activities of daily living. These gains translated into enhanced functional independence and better quality of life [40].

A person with chronic stroke engaged in team-based poststroke physiotherapy via telerehabilitation. Despite the time elapsed since stroke onset, the client made substantial gains in balance, upper-extremity motor function, cognition, activity capacity, and care partner-assessed quality of life. Their course illustrates that collaborative, interdisciplinary team-based telerehabilitation can promote recovery in chronic stroke when activities encourage repetition of meaningful, functional tasks [41].

Rehabilitation remains a complex process, and treatment should therefore take place in a challenging environment [11]. Seven main categories contribute to the quality of a challenging environment for older patients: therapy time, group training, patient-regulated exercise, family participation, task-oriented training, enriched environment, and team dynamics. Therapy time, an indicator of the length of physical activity, is related to rehabilitation outcomes. Group training enables an increased amount of practice and facilitates the achievement of specific goals, such as improved mobility. Patient-regulated exercise enhances patients' ability to self-manage and increases practice opportunities. Family participation not only extends practice time but can also have a positive impact on rehabilitation outcomes [1]. Task-oriented training encourages patients to engage in meaningful activities in a supportive environment to improve function. An enriched environment challenges patients both socially and physically, fostering greater engagement. Effective team dynamics characterized by shared goals and good communication further enhance the quality of rehabilitation. These seven components create a positive cycle that promotes a successful rehabilitation trajectory.

Rehabilitation therapy helps individuals maintain or return to optimal functioning after injuries, illnesses, or chronic health problems. Its history spans thousands of years and includes a wide variety of practices across cultures. Today, researchers recognize rehabilitation as a multidimensional approach that involves physical, activities of daily living (ADL), psychological, and social function. Contemporary evidence

emphasizes the importance of a patient-centered and multidisciplinary approach.

Physical rehabilitation therapy promotes optimal mobility, function, and health. Techniques include land and aquatic therapy, manual therapy, therapeutic exercises, electrical stimulation, and functional training. Occupational rehabilitation therapy focuses on enhancing independence by developing the skills needed for daily living at work, home, or school. Speech and language rehabilitation therapy improves capabilities such as communication and swallowing through various methods including oral motor therapy and naturalistic communication. Psychological rehabilitation therapy addresses emotional and mental health needs through approaches like cognitive-behavioral therapy, interpersonal therapy, mindfulness, and expressive therapies.

The rehabilitation process begins with a thorough assessment of needs, goals, and capabilities. Based on this evaluation, therapists develop an appropriate plan that identifies suitable methods and activities. Interventions are then delivered through individual or group therapy, in clinics, hospitals, or the community. Continuous monitoring ensures progress toward objectives, with adjustments made as necessary to optimize outcomes. Throughout, a patient-centered and multidisciplinary approach remains integral to effective care.

Robust evidence underpins rehabilitation therapy, drawing on current research, clinical guidelines, and outcome measurements. Multidisciplinary collaboration among professionals-including physicians, nurses, and social workers- and involvement of patients' family members contribute positively to treatment results. Emerging technologies such as assistive devices, tele-rehabilitation, and virtual reality further enhance therapeutic possibilities. Meanwhile, challenges related

to access, cultural factors, and funding underscore the need for ongoing innovation. Looking ahead, new innovations, policy developments, and training initiatives will prepare practitioners to meet the evolving demands of rehabilitation therapy. A series of case studies elucidates these aspects, demonstrating practical applications and lessons learned [42].

8.3 Innovative Treatment Approaches

Innovative treatments leverage physical sciences to develop novel therapies. Targeted approaches aim directly at pathological conditions or incidents, minimizing systemic effects and undesirable responses. Such treatments seek to change the energy state of a molecule or cells to promote return to normal function. An innovative treatment can be considered one that uses a control system sufficiently different from conventional therapies in the same application to make it effective when all others are inadequate. Delivery of electromagnetic fields (EMFs) plays a central role in many innovative treatments. They can enable modification of processes inside molecules and biological cells and so be used therapeutically when applied externally with precise waveforms and time variations. It is the subtle use of energy transfer as a controlling influence on bodies undergoing biological change, including water, that leads to innovative treatments based on physical principles.

Various forces including ultrasound, radiation, electrical stimulation, pulsed electromagnetic fields, and numerous mechanical approaches have been effectively employed with notable success across multiple domains. These innovative techniques target a wide array of biological issues, specifically conditions such as cancer, various neurodegenerative disorders, diabetes management, and injuries to tissues, including instances of broken bones or fractures. Additionally, advancements in the field of quantum information technology present exciting

opportunities to further enhance health and overall well-being. These advancements focus on energetic modifications that have the potential to significantly reduce the levels of damage or disease within the body, thereby offering new avenues for treatment and recovery [11, 85].

Chapter - 9

Ethical Considerations in Physical Sciences

The continuous and ongoing development of diagnostic and therapeutic techniques has raised profound ethical questions that are closely related to issues of consent and privacy, both of which require careful and thoughtful consideration. Ethics provides a critical framework for action in healthcare as well as in other professional groups, effectively guiding the conduct and behavior of practitioners whose practices are primarily determined by established ethical principles. These principles encompass respect for persons, autonomy, beneficence, nonmaleficence, veracity, confidentiality, justice, and fidelity. They emphasize the inherent value and uniqueness of individuals-the very qualities that confer individuality and dignity-thereby diverging from a strictly legalistic approach. This ethical framework helps clinicians navigate ambiguous or conflicting guidance, allows them to analyze moral dilemmas, and justifies their decision-making processes. The routine and diligent employment of these principles significantly enhances patient care, actively supports effective problem-solving, and facilitates informed decision-making. For instance, the principle of respect for persons involves the recognition of others' worth as individuals, often acknowledging that they may be vulnerable beings, as well as providing them with the freedom and opportunity to make their own choices. Such deep-seated respect constitutes a fundamental cornerstone of the caring professions, underpinning the ethical practice that defines the relationship between healthcare providers and patients. This is crucial in

fostering trust and promoting a collaborative atmosphere that can lead to better health outcomes [86].

9.1 Patient Consent

Radiation and corona radiata are frequent incidents of lining of torrents. Following a comprehensive set of patient-related contingencies that must be adhered to, an informed consent process was meticulously developed for the several essential stages needed for effectively requesting ionising medical imaging procedures. The approach not only outlines an event-based perspective on informed consent but also schematises a detailed series of important information and communicative acts that are performed within the intricate diagnostic process. This structured methodology ensures that patients are adequately informed and understand each step, fostering a clearer communication channel throughout their medical journey [87].

9.2 Data Privacy

Patient privacy and confidentiality are cornerstones of ethical medical practice and research. Ensuring these principles in the analysis and storage of medical data is paramount. Ethical guidelines strongly emphasize obtaining patient consent for digital data usage, and its utilization without such consent is considered unacceptable [88].

For decades, healthcare institutions have operated under rigorous confidentiality policies. Their extension to research involving medical data, however, raises additional issues. When informed consent for data collection is acquired, determining whether this consent also covers subsequent data usage for various applications requires careful legal and ethical consideration [89].

The global expansion of sophisticated medical-technological and biotechnologies generates increasingly voluminous and

varied data. The resulting rise in data collection and usage challenges the maintenance of patient confidentiality. Unforeseen risks associated with data exploitation become evident with the proliferation of open international and interdisciplinary research networks. The central challenge lies in balancing individual rights and freedoms against the collective benefits of scientific progress. If misplaced, the principles of safeguarding individual data and protecting communal scientific advancement could become sources of conflict, particularly when legislation and data-management tools are ill-adapted to the situation.

Ethical procedures must be meticulously defined from the very outset of any project that involves the handling of medical data. This foundational step is crucial as it addresses key aspects such as storage, processing, and exploitation of sensitive information. It is imperative that additional vigilance is exercised, particularly when projects involve networked data transmission. This aspect significantly raises the potential accessibility of data, thereby increasing the risk of unauthorized access or breaches. The ideal comprehensive solution combines well-defined procedures with restrictive access measures, strong encryption methods, and effective pseudonymization techniques to ensure the security and privacy of individuals' medical information [90].

Chapter - 10

Future Directions in Physical Sciences

Current trends in physical sciences suggest that diagnostic and therapeutic techniques will become less invasive, more precise, individualized, and versatile. Diagnostics is expanding beyond traditional methods to incorporate the analysis of systemic networks, deoxyribonucleic acid, and messenger ribonucleic acid, while therapy is increasingly combining modalities such as radiation, ultrasound, and laser treatments [48]. Emerging techniques will integrate new technologies, physical-science principles, and knowledge from other disciplines. For example, medical specialties will leverage artificial intelligence and machine-learning models to optimize diagnosis and treatment, transitioning from images of organs to analyses of cellular and molecular structures and metabolic pathways.

10.1 Emerging Technologies

Medical imaging continues to be fundamental in diagnosis and treatment. Various modalities, including X-ray, CT, MRI, Nuclear Imaging, Ultrasound, Electrical Impedance Tomography (EIT), and Emerging Technologies for in vivo imaging are widely used worldwide. Reading and interpreting medical images remains a challenge for radiologists due to the large heterogeneity of diseases and limitations of image quality or resolution. Emerging technologies in medical imaging, combined with data mining and search, support translational clinical research, improve patient care, and increase the efficiency of the healthcare system.

Point-of-care personalized medicine plays a pivotal role in the future of precision health. While genomics has historically focus, recent advances have extended toward spectroscopic-based technologies such as molecular phenotyping, which generate unique biomarkers or molecular fingerprints without reliance on traditional -omics data. Impedance spectroscopy emerges as a particularly promising, low-cost and integrable diagnostic tool [49]. Furthermore, NMR spectroscopy and THz spectroscopy comprise powerful nonionizing, nondestructive methods already employed in personalized diagnostics. The decentralization approaches remains a central objective, motivating developments in spectroscopy, relaxometry, and imaging; the proliferation of open-source tools facilitates broader accessibility [91]. Ongoing progress in semiconductor technology enables the integration of diverse sensing components and partsinto portable, point-of-care instruments for applications including tuberculosis detection, bacterial identification, oxygen saturation measurement, malaria screening, and rapid phenotyping of diabetes.

10.2 Interdisciplinary Approaches

A truly multidisciplinary approach is absolutely essential for the successful development of both diagnostic and therapeutic technologies within the field of medicine. It is imperative that engineering combined with physical sciences, biology, and biomedical engineering work together in a collaborative manner to create sophisticated instruments and innovative algorithms. These technologies must be capable of acquiring, analyzing, and interpreting complex and often multifaceted clinical data. For instance, advanced imaging together with biophysical methods harness the ability to provide invaluable information about the various disease states of tissues and the behavior of individual molecules. Furthermore, hand-held devices have the potential to accurately measure HIV viral loads or identify epigenetic

modifications and alterations in nucleic acid methylation at the single-cell level. This capability is revolutionary, as it can facilitate rapid patient triage in emergency medical situations or enable personalized treatment strategies for patients suffering from cancer, various infectious diseases, and inflammatory disorders. Additionally, the ongoing development of autonomous systems, which are capable of efficiently analyzing patient data and intelligently suggesting effective treatment options, represents another significant and promising avenue for future research initiatives. As we continue to explore these possibilities, the integration of multiple disciplines will undoubtedly play a critical role in advancing medical science and improving patient outcomes [80, 92, 93, 94, 95, 96].

Chapter - 11

Conclusion

The convergence of physical sciences and medicine compels an overviewthe anatomy and physiologyf of the physical sciences as a precursor to detailed focus on physics and chemistry. Physics principlesmechanics, thermodynamics, electromagnetism, and opticsunderlie the therapeutic and diagnostic techniques surveyed subsequently. Fundamental chemistrychemical reactions, equilibrium, acid-base behavior, and biochemistryalso informs methods discussed later. Mathematical toolsstatistics, stochastic processes, calculus, and integral transformsaddress radiologic diagnostics and augment models of therapeutic efficacy.

Physical-science principles supplement a system-oriented treatment of medical diagnosis and therapy. Diagnostic modalities radiology, electromagnetics, ultrasound, chemiluminescence, electrophysiology, biophysics, laboratory analyses combine physical methods and modeling to detect pathology. Therapeutic techniquesionizing radiation, ultrasound, and laser modalities restore health purposefully. Specific diagnostic applicationscardiovascular, pulmonary, neurologic, orthopedic, oncologic, and various body regionsrely on imaging, instrumentation, and modeling to specify and localize injury or compromise. Therapeutic applications range from symptom palliation and acute intervention to prevention and rehabilitation.

The physical principles and clinical applications rest on an ethical foundation emphasizing freely given consent and data

confidentiality. Emerging directions point to forthcoming modalities addressing chronic infirmity and novel concerns in personalized formats.

The wellspring of therapeutic and diagnostic possibilities arises from a multifaceted interplay of physical-science principles alongside insightful readings into the fundamental processes of life. In scanning the expansive breadth of physics, chemistry, and mathematics, we can frame a robust structural foundation that offers wall anchoring and vantage support for each of the myriad medical explorations undertaken. The subsequent exhaustive survey reveals that all applications-together with the guiding principles that undergird them-are thoughtfully arranged according to the traditional divisions of physics, chemistry, and mathematics, providing a comprehensive overview of their interconnectedness and collaborative potential in advancing medical science.

References

- 1. S. Hussain, I. Mubeen, N. Ullah, "Modern diagnostic imaging technique applications and risk factors in the medical field: a review," BioMed Research, 2022. wiley.com
- 2. S. Abbara and S. Kligerman, "Diagnostic Imaging: Cardiovascular-E-Book," 2025. [HTML]
- 3. S. M. Srinivasan and V. Sharma, "Applications of AI in cardiovascular disease detection-A review of the specific ways in which AI is being used to detect and diagnose cardiovascular diseases," in Advancements and Applications, 2025. [HTML]
- M. Mirzaei, "Review of the Book Principles and Practice of Particle Therapy, Edited by Timothy D. Malouff and Daniel M. Trifiletti, 1st Edition 111 River Street, Hoboken, NJ 07030, USA: John Wiley & Sons Ltd, 2022 p.560. ISBN: 9781119707516," 2024. ncbi.nlm.nih.gov
- 5. L. Ting Yi and J. Liu, "Mechanical Therapy as a Potential Green Way to Attack Cancer Disease," 2013. [PDF]
- 6. H. Schnell, F. Max-Josef Wagner, and H. Locher, "Die segmentale und somatische Dysfunktion: Wie funktioniert Manuelle Medizin?," 2022. ncbi.nlm.nih.gov
- 7. U.M.B.E.R.T.O. LUCIA, "Bioengineering Thermodynamics: An Engineering Science for Thermodynamics of Biosystems," 2015. [PDF]
- 8. Y.K. Rajnath, S. Tiwari, and V. Kumar, "Thermodynamics for Mechatronics," in *Intelligent Techniques in ...*, 2024. [HTML]

- 9. E. Kim, "Information geometry, fluctuations, non-equilibrium thermodynamics, and geodesics in complex systems," Entropy, 2021. mdpi.com
- 10. H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, and Z. Liu, "Scientific discovery in the age of artificial intelligence," Nature, 2023. google.com
- 11. M. O. Mattsson and M. Simkó, "Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz," 2019. ncbi.nlm.nih.gov
- 12. A. V. Dunaev, E. V. Potapova, Y. I. Loktionova, E. O. Bryanskaya *et al.*, "Biomedical Photonics Methods in Solving Diagnostic Tasks," 2023. ncbi.nlm.nih.gov
- 13. G. Singh and A. Chanda, "Mechanical properties of whole-body soft human tissues: a review," Biomedical Materials, 2021. [HTML]
- 14. L. Bianchi, F. Cavarzan, L. Ciampitti, *et al.*, "Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review," *International Journal*, vol. 2022, Taylor & Francis. tandfonline.com
- 15. J. J. Kimondo, R. R. Said, J. Wu, C. Tian *et al.*, "Mechanical rheological model on the assessment of elasticity and viscosity in tissue inflammation: A systematic review," Plos one, 2024. plos.org
- 16. S. Kolli, "3D Bioprinting of Tissue Constructs with Tunable Mechanical Properties and Optimized Structural Accuracy for Human Disease ...," 2025. ohiolink.edu
- 17. A. Grekova, I. Burdina, I. Gridina, and A. Shyrykalova, "Development and structure of the discipline 'Applied chemistry in medicine' (elective course) at the school of medicine," Journal of Education, 2024. umk.pl

- 18. S. K. Guchhait, "Medicinal chemistry education: Molecular level understanding of all medicinal properties and innovative strategies," Journal of Medicinal Chemistry, 2024. acs.org
- 19. M. Eyube, "Medicinal Chemistry: Scope, Applications, and Significance in Modern Science," International Journal of Innovative Research in ..., 2024. researchgate.net
- 20. P. W. Atkins, R. G. Ratcliffe, J. De Paula, and M. Wormald, "Physical chemistry for the life sciences," 2023. tuiasi.ro
- 21. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, *et al.*, "Climate change 2021: the physical science basis," IPCC, 2021. ipcc.ch
- 22. D. Angelis and F. Sofos, "Artificial intelligence in physical sciences: Symbolic regression trends and perspectives," Archives of Computational Sciences, vol. 2023. nih.gov
- 23. C. S. Olver, "Erythrocyte structure and function," Schalm's veterinary hematology, 2022. [HTML]
- 24. J. L. V. Corrons, L. B. Casafont, and E. F. Frasnedo, "Concise review: how do red blood cells born, live, and die?," Annals of hematology, 2021. [HTML]
- 25. P. Thiagarajan, C. J. Parker, and J. T. Prchal, "How do red blood cells die?," Frontiers in physiology, 2021. frontiersin.org
- 26. A. P. Singh, N. K. Maurya, R. Saxena, "An overview of red blood cell properties and functions," Journal of International ..., 2024. academia.edu
- 27. D. Mendelsohn, "A study of some aspects of the metabolism of fatty acids by the human red blood cell in health and disease, with special reference to diabetes mellitus," 1962. [PDF]

- 28. A. L. Jonsson, M. A. J. Roberts, J. L. Kiappes, and K. A. Scott, "Essential chemistry for biochemists," 2017. ncbi.nlm.nih.gov
- 29. A. K. Singh, K. S. Italiya, S. Narisepalli, *et al.*, "Role of chain length and degree of unsaturation of fatty acids in the physicochemical and pharmacological behavior of drug-fatty acid conjugates in diabetes," *Journal of Medicinal Chemistry*, vol. 64, no. 12, pp. 8657-8675, 2021. [HTML]
- 30. T. Kellerer, K. Kleigrewe, B. Brandl, T. Hofmann, "Fatty acid esters of hydroxy fatty acids (FAHFAs) are associated with diet, BMI, and age," Frontiers in..., vol. 2021. frontiersin.org
- 31. S. S. Shetty and N. S. Kumari, "Fatty acid desaturase 2 (FADS 2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes mellitus," Scientific Reports, 2021. nature.com
- 32. M. Prada, F. Eichelmann, C. Wittenbecher, *et al.*, "Plasma lipidomic n-6 polyunsaturated fatty acids and type 2 diabetes risk in the EPIC-Potsdam prospective cohort study," *Diabetes*, vol. 2023. diabetesjournals.org
- 33. N. Aralova, O. Klyuchko, V. Mashkin, "Mathematical Model for the Investigation of Human Organism Functional Self-organisation," Electronics and Control, 2021. nau.edu.ua
- 34. D. E. Ingber, "Human organs-on-chips for disease modelling, drug development and personalized medicine," Nature Reviews Genetics, 2022. nature.com
- 35. A. Loewa, J. J. Feng, and S. Hedtrich, "Human disease models in drug development," Nature reviews bioengineering, 2023. nature.com
- 36. L. Xuan, Z. Ju, M. Skonieczna, P. K. Zhou *et al.*, "Nanoparticles-induced potential toxicity on human health:

- applications, toxicity mechanisms, and evaluation models," MedComm, 2023. wiley.com
- 37. A. Brandt, "Noise and vibration analysis: signal analysis and experimental procedures," 2023. [HTML]
- 38. G. Ashton, N. Bernstein, J. Buchner, X. Chen, "Nested sampling for physical scientists," in *Reviews Methods*, 2022. [PDF]
- 39. K. Wei, Y. Fu, Y. Zheng, and J. Yang, "Physics-based noise modeling for extreme low-light photography," in *Proceedings of the IEEE Conference on Pattern Analysis and Machine Intelligence*, 2021. [PDF]
- 40. J. Wright and Y. Ma, "High-dimensional data analysis with low-dimensional models: Principles, computation, and applications," 2022. [HTML]
- 41. E. Barbierato and A. Gatti, "The challenges of machine learning: A critical review," Electronics, 2024. mdpi.com
- 42. T. Yang, W. P. King, and N. Miljkovic, "Phase change material-based thermal energy storage," Cell Reports Physical Science, 2021. cell.com
- 43. M. H. Chin, N. Afsar-Manesh, A. S. Bierman, *et al.*, "Guiding principles to address the impact of algorithm bias on racial and ethnic disparities in health and health care," JAMA Network, 2023. jamanetwork.com
- 44. L. Mulugeta, A. Drach, A. Erdemir, C. A. Hunt *et al.*, "Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience," 2018. ncbi.nlm.nih.gov
- 45. A. M. Law, "How to build valid and credible simulation models," 2022 Winter Simulation Conference (WSC), 2022. simulation.su

- 46. F. T. Musuamba and I. Skottheim Rusten, "Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility," CPT, vol. 2021, Wiley Online Library. wiley.com
- 47. S. Frechen and A. Rostami-Hodjegan, "Quality assurance of PBPK modeling platforms and guidance on building, evaluating, verifying and applying PBPK models prudently under the umbrella of ...," Pharmaceutical research, 2022. springer.com
- 48. R. Kumar Singh, N. Priyadarshini Nayak, T. Behl, R. Arora *et al.*, "Exploring the Intersection of Geophysics and Diagnostic Imaging in the Health Sciences," 2024. ncbi.nlm.nih.gov
- 49. S. K. M Shadekul Islam, M. D. Abdullah Al Nasim, I. Hossain, D. Md Azim Ullah *et al.*, "Introduction of Medical Imaging Modalities," 2023. [PDF]
- 50. T. Kanti Bera, "Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review," 2014. ncbi.nlm.nih.gov
- 51. S. McGee, "Evidence-based physical diagnosis e-book," 2021. [HTML]
- 52. B. Abhisheka, S. K. Biswas, B. Purkayastha, D. Das, "Recent trend in medical imaging modalities and their applications in disease diagnosis: a review," Multimedia Tools and Applications, vol. 2024, Springer. [HTML]
- 53. M. M. Müller, "Quality and diagnostic perspectives in laboratory diagnostics," 2010. [PDF]
- 54. C. Avivar, "Strategies for the Successful Implementation of Viral Laboratory Automation," 2012. ncbi.nlm.nih.gov

- 55. S. M. Alenazi and B. A. Bugis, "The role of laboratory information system in improving the delivery of laboratory services: A recent systematic review," Combinatorial Chemistry & High Throughput Screening, vol. 2023. [HTML]
- 56. T. E. White, W. B. Wong, D. Janowiak, and others, "Strategies for laboratory professionals to drive laboratory stewardship," *Practical Laboratory Medicine*, vol. 2021, Elsevier. sciencedirect.com
- 57. O. Bayley, E. Savino, A. Slattery, and T. Noel, "Autonomous chemistry: Navigating self-driving labs in chemical and material sciences," Matter, 2024. cell.com
- 58. J. Emadi, "The Development of a Design Theory for Web Based Information Systems," Journal of Robotics Spectrum, 2023. anapub.co.ke
- 59. M. Belkin, "Assessment of information systems effectiveness in private and hospital pathology," 2024. rmit.edu.au
- 60. M. G. Hanna, L. Pantanowitz, R. Dash, J. H. Harrison, "Future of artificial intelligence (AI)-machine learning (ML) trends in pathology and medicine," Modern Pathology, 2025. sciencedirect.com
- 61. C. Voyant and D. Julian, "A Short Synthesis Concerning Biological Effects and Equivalent Doses in Radiotherapy," 2017. [PDF]
- 62. R. J. Goodburn, M. E. P. Philippens, T. L. Lefebvre, A. Khalifa *et al.*, "The future of MRI in radiation therapy: Challenges and opportunities for the MR community," 2022. ncbi.nlm.nih.gov
- 63. S. P. Lee, "Book Review," 2002. ncbi.nlm.nih.gov
- 64. G. Portilla and F. Montero de Espinosa, "Device for Dual

- Ultrasound and Dry Needling Trigger Points Treatment," 2023. ncbi.nlm.nih.gov
- 65. C. R. Bawiec, "Interaction of non-thermal, non-cavitational 20-100 kHz ultrasound and biological tissue: modeling and experimental validation," 2015. [PDF]
- 66. W. T. Wu, K. V. Chang, Y. C. Hsu, P. C. Hsu *et al.*, "Artifacts in Musculoskeletal Ultrasonography: From Physics to Clinics," 2020. ncbi.nlm.nih.gov
- 67. K. Žužul, "The use of lasers in dermatology," 2014. [PDF]
- 68. S. Parker, M. Cronshaw, E. Anagnostaki, V. Mylona *et al.*, "Current Concepts of Laser-Oral Tissue Interaction," 2020. ncbi.nlm.nih.gov
- 69. H. P. Berlien, "Principles of Laser Application in Medicine," 2018. [PDF]
- 70. G. Soldati, A. Smargiassi, A. A. Mariani, and R. Inchingolo, "Novel aspects in diagnostic approach to respiratory patients: is it the time for a new semiotics?," 2017. ncbi.nlm.nih.gov
- 71. K. K. L. Wong, D. Wang, J. K. L. Ko, J. Mazumdar *et al.*, "Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures," 2017. ncbi.nlm.nih.gov
- 72. A. Pepe, F. Crimì, F. Vernuccio, G. Cabrelle *et al.*, "Medical Radiology: Current Progress," 2023. ncbi.nlm.nih.gov
- 73. C. C. Cyran, P. M. Paprottka, M. Eisenblätter, D. A. Clevert *et al.*, "Visualization, imaging and new preclinical diagnostics in radiation oncology," 2014. [PDF]
- 74. A. Pulumati, A. Pulumati, B. S. Dwarakanath, A. Verma *et al.*, "Technological advancements in cancer diagnostics: Improvements and limitations," 2023. ncbi.nlm.nih.gov

- 75. P. Garg, G. Singhal, D. Horne, P. Kulkarni, and R. Salgia, "Molecular PET imaging: Unlocking the secrets of cancer metabolism," Biochemical..., vol. 2025, Elsevier. sciencedirect.com
- 76. K. Cecil, L. Huppert, R. Mukhtar, and E. H. Dibble, "Metabolic positron emission tomography in breast cancer," *PET Clinics*, vol. 2023. [HTML]
- 77. C. Jin, X. Luo, X. Li, R. Zhou, Y. Zhong, Z. Xu, and C. Cui, "Positron emission tomography molecular imaging-based cancer phenotyping," *Cancer*, vol. 2022, Wiley Online Library. wiley.com
- 78. N. Oriuchi, H. Endoh, and K. Kaira, "Monitoring of current cancer therapy by positron emission tomography and possible role of radiomics assessment," International Journal of Molecular Sciences, 2022. mdpi.com
- 79. J. Holden, "Sensory perceptual metrics: design and application of biologically based methods for the assessment of systemic cortical alterations," 2013. [PDF]
- 80. N. Manek and W. Tiller, "P05.09. Feasibility of Information Medicine as Delivered by Intention Host Devices: A Case Report," 2013. ncbi.nlm.nih.gov
- 81. X. Ma, H. Zhang, and T. Xu, "Whether ambulatory electroencephalogram and visual tracking system could be the new strategy for pain assessment?," 2023. ncbi.nlm.nih.gov
- 82. A. Viktorovich Tarakanov, A. Alexandrovich Tarakanov, T. Kharybina, and I. Goryanin, "Treatment and Companion Diagnostics of Lower Back Pain Using Self-Controlled Energo-Neuroadaptive Regulator (SCENAR) and Passive Microwave Radiometry (MWR)," 2022. ncbi.nlm.nih.gov

- 83. V. Mayoral Rojals, C. Amescua Garcia, P. Denegri, M. Antonio Narvaez Tamayo *et al.*, "The Invasive Management of Pain: Diagnosis and New Treatment Options," 2023. ncbi.nlm.nih.gov
- 84. T. Batista e Siqueira, J. Parraça, and J. Paulo Sousa, "Available rehabilitation technology with the potential to be incorporated into the clinical practice of physiotherapists: A systematic review," 2024. ncbi.nlm.nih.gov
- 85. M. Gandhi and C. Bawane Vishnu, "PA01.26. Clinical application of quantum physics in ayurveda," 2012. ncbi.nlm.nih.gov
- 86. H. Malau, "Ethical Principle Dimensions of Doctors and Nurses toward Patient's Satisfaction," 2007. [PDF]
- 87. V. Recchia, A. Dodaro, and L. Braga, "Event-based versus process-based informed consent to address scientific evidence and uncertainties in ionising medical imaging," 2013. ncbi.nlm.nih.gov
- 88. G. Gürsoy, M. Doerr, J. Wilbanks, J. K. Wagner *et al.*, "Navigating ethical quandaries with the privacy dilemma of biomedical datasets," 2020. ncbi.nlm.nih.gov
- 89. Y. Coppieters and A. Levêque, "Ethics, privacy and the legal framework governing medical data: opportunities or threats for biomedical and public health research?," 2013. ncbi.nlm.nih.gov
- 90. N. Yadav, S. Pandey, A. Gupta, P. Dudani *et al.*, "Data Privacy in Healthcare: In the Era of Artificial Intelligence," 2023. ncbi.nlm.nih.gov
- 91. W. Kung Peng and D. Paesani, "Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine," 2019. ncbi.nlm.nih.gov

- 92. A. Marino, S. Stracquadanio, and S. Marletta, "Value of a multidisciplinary approach for modern diagnosis of infectious diseases," Frontiers in Cellular and ..., 2024. frontiersin.org
- 93. S. Zeb, FNU Nizamullah, N. Abbasi, "AI in healthcare: revolutionizing diagnosis and therapy," in *Journal of Multidisciplinary Research*, 2024. researchgate.net
- 94. Y. Oliinyk, D. Maltsev, O. Shydlovska, "Integrated approach to diagnosis and treatment in clinical medicine: search for optimal solutions," *Journal of Pioneering Research*, 2024. jpmsonline.com
- 95. S. Hogarth, F. A. Miller, and S. Sturdy, "Multidisciplinary perspectives on the regulation of diagnostic technologies," Social Science & Medicine, 2022. nih.gov
- 96. L. Qin, H. Wang, W. Ning, M. Cui, and Q. Wang, "New advances in the diagnosis and treatment of autism spectrum disorders," *European Journal of Medical ...*, vol. 2024, Springer. springer.com